Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-17T19:26:49.446Z Has data issue: false hasContentIssue false

Malaria, quinine and red cell lysis

Published online by Cambridge University Press:  06 April 2009

Hans Laser
Affiliation:
Institute of Animal Physiology, Agricultural Research Council, Babraham, Cambridge, England.
Patrick Kemp
Affiliation:
Institute of Animal Physiology, Agricultural Research Council, Babraham, Cambridge, England.
Nigel Miller
Affiliation:
Institute of Animal Physiology, Agricultural Research Council, Babraham, Cambridge, England.
David Lander
Affiliation:
Institute of Animal Physiology, Agricultural Research Council, Babraham, Cambridge, England.
Roger Klein
Affiliation:
Medical Research Council, Biochemical Parasitology Unit, Molteno Institute, University of Cambridge, Cambridge, England.

Extract

An hypothesis is presented to explain the red cell lysis which accompanies an acute malarial infection, as well as the mode of action of certain schizonticidal drugs in the quinoline and acridine series. Quinine and a number of other antimalarial drugs have been found to counteract the inhibition by protein of fatty acid-induced lysis, when tested in an in vitro system. It is suggested that these schizonticides exert their chemotherapeutic effect by inducing the premature lysis of the parasitized red cell, as a result of relieving the inhibition by protein of haemolysis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, A. (1966). The Acridines, 2nd edn, pp. 476–83. Edward Arnold Ltd: London.Google Scholar
Albert, A. (1973). Selective Toxicity, 5th edn.London: Chapman and Hall.CrossRefGoogle Scholar
Angus, M. G. N., Fletcher, K. A. & Maegraith, B. G. (1971). Studies on the lipids of Plasmodium knowlesi-infected rhesus monkeys (Macaca mulatta). Annals of Tropical Medicine and Parasitology (a) 65, 135–54; (b) 65, 155–67; (c) 65, 419–27; (d) 65, 429–39.CrossRefGoogle ScholarPubMed
Angus, M. G. N., Thurnham, D. I., Fletcher, K. A. & Maegraith, B. G. (1967). 1. Biochemical aspects of the pathogenesis of malaria. 2. Gas chromatography of serum non-esterified fatty acid in Pl. knowlesi malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 61, 4.Google Scholar
Bell, P. H. & Roblin, R. O. (1942). Studies in chemotherapy. VII. A theory of the relation of structure to activity of Sulfanilamide type drugs. Journal of the American Chemical Society 64, 2905–17.CrossRefGoogle Scholar
Cenedella, R. J. (1968). Lipid synthesis from glucose carbon by Plasmodium berghei in vitro. American Journal of Tropical Medicine and Hygiene 17, 680–4.CrossRefGoogle Scholar
Cenedella, R. J., Jarrell, J. J. & Saxe, L. H. (1969). Plasmodium berghei: Production in vitro of free fatty acids. Experimental Parasitology 24, 130–6.CrossRefGoogle ScholarPubMed
Conklin, K. A., Chou, S. C. & Ramanathan, S. (1969). Quinine: Effect on Tetrahymena pyriformis. I. Inhibition of synchronized cell division and site of action. Pharmacology 2, 247–56.CrossRefGoogle ScholarPubMed
Davis, B. D. & Dubos, R. J. (1947). The binding of fatty acids by serum albumin, a protective growth factor in bacteriological media. Journal of Experimental Medicine 86, 215–28.CrossRefGoogle ScholarPubMed
Dunn, M. J. (1969). Alteration of red blood cell sodium transport during malarial infection. Journal of Clinical Investigation 48, 674–84.CrossRefGoogle ScholarPubMed
Estensen, R. D., Krey, A. K. & Hahn, F. E. (1969). Studies on a deoxyribonucleic acid-quinine complex. Molecular Pharmacology 6, 532–41.Google Scholar
Fairley, N. H. (1945). Chemotherapeutic suppression and prophylaxis in malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 38, 311–65.Google ScholarPubMed
Fife, E. H., von Doenhoff, A. E. & D'Antonio, L. E. (1972). In vitro and in vivo studies of a lytic factor isolated from Plasmodium knowlesi. In Basic Research in Malaria. Proceedings of the Helminthological Society of Washington.Google Scholar
Fitch, D. C. (1969). Chloroquine resistance in malaria. A deficiency of chloroquine binding. Proceedings of the National Academy of Sciences 64, 1181–7.CrossRefGoogle ScholarPubMed
Fogel, B. J., Shields, C. E. & von Doenhoff, A. E. (1966). The osmotic fragility of erythrocytes in experimental malaria. American Journal of Tropical Medicine and Hygiene 15, 269–75.CrossRefGoogle ScholarPubMed
Foy, H. & Kondi, A. (1950). The correlation between blackwater fever, malaria, quinine, and atebrin. Annals of Tropical Medicine and Parasitology 44, 309–18.CrossRefGoogle ScholarPubMed
Foy, H., Kondi, A., Rebelo, A. & Soiero, A. (1945). Survival of transferred red cells in blackwater fever circulation and of blackwater fever red cells in normal circulation. Transactions of the Royal Society of Tropical Medicine and Hygiene 38, 271–86.CrossRefGoogle Scholar
Giemsa, G., Weise, W. & Tropp, C. (1926). Chemotherapeutische Studien mit Vogelmalaria (Plasmodium praecox). Archiv für Schiffs- und Tropenhygiene 30, 334–47.Google Scholar
Gilles, H. M. & Taylor, B. G. (1961). The existence of the glucose-6-phosphate dehydro-genase deficiency trait in Nigeria and its clinical implications. Annals of Tropical Medicine and Parasitology 55, 64–9.CrossRefGoogle Scholar
Goodman, de W. S. (1958). The interaction of human serum albumin with long-chain fatty acid anions. Journal of the American Chemical Society 80, 3892–8.CrossRefGoogle Scholar
Goodson, J. A., Henry, T. A. & MacFie, J. W. S. (1930). XCVIII. The action of the Cinchona and certain alkaloids in bird malaria. Biochemical Journal 24, 874–90.CrossRefGoogle Scholar
Greisman, S. E. (1959). Hyperlipemia and haemolysis. I. Interaction of sodium oleate and human erythrocytes. Proceedings of the Society for Experimental Biology and Medicine 101, 117–22.CrossRefGoogle ScholarPubMed
Gutteridge, W. E. & Trigg, P. I. (1971). Action of pyrimethamine and related drugs against Plasmodium knowlesi in vitro. Parasitology 62, 431–44.CrossRefGoogle Scholar
Gutteridge, W. E. & Trigg, P. I. (1972). Some studies on the DNA of Plasmodium knowlesi. In Comparative Biochemistry of Parasites (ed. van den Bossche, H.), ch. 14. New York and London: Academic Press.Google Scholar
Gutteridge, W. E., Trigg, P. I. & Bayley, P. M. (1972). Effects of chloroquine on Plasmodium knowlesi in vitro. Parasitology 64, 3745.CrossRefGoogle ScholarPubMed
Hegner, R., Shaw, E. H. & Manwell, R. D. (1928). Methods and results of experiments on the effects of drugs on bird malaria. American Journal of Hygiene 8, 564–82.Google Scholar
Homewood, C. A. & Neame, K. D. (1974). Malaria and the permeability of the host erythrocyte. Nature, London 252, 718–9.CrossRefGoogle ScholarPubMed
Howells, R. E., Peters, W. & Homewood, C. A. (1972). Physiological adaptability of malaria parasites. In Comparative Biochemistry of Parasites (ed. van den Bossche, H.), pp. 235–58. New York & London: Academic Press.CrossRefGoogle Scholar
Howells, R. E., Peters, W., Homewood, C. A. & Warhurst, D. C. (1970). Theory for the mechanism of chloroquine resistance in rodent malaria. Nature, London 228, 625–8.CrossRefGoogle ScholarPubMed
Inglot, A. D. & Wolna, E. (1968). Reactions of non-steroidal anti-inflammatory drugs with the erythrocyte membrane. Biochemical Pharmacology 17, 269–79.Google Scholar
Kreier, J., Taylor, W. M. & Wagner, W. M. (1972). Destruction of erythrocytes in monkeys (Macaca mulatta) infected with Plasmodium cynomolgi. American Journal of Veterinary Research 33, 409–14.Google ScholarPubMed
Lamar, R. V. (1911 a). Lysis of the pneumococcus and haemolysis by certain fatty acids and their alkali soaps. Journal of Experimental Medicine 13, 380–6.CrossRefGoogle ScholarPubMed
Lamar, R. V. (1911 b). Some further observations upon the action of certain soaps on the pneumococcus and its experimental infections. Journal of Experimental Medicine 14, 256–64.CrossRefGoogle ScholarPubMed
Laser, H. (1946). A method of testing the antimalarial properties of compounds in vitro. Nature, London 157, 301.CrossRefGoogle ScholarPubMed
Laser, H. (1948). Haemolytic system in the blood of malaria-infected monkeys. Nature, London 161, 560–1.CrossRefGoogle ScholarPubMed
Laser, H. (1950). The isolation of a haemolytic substance from animal tissues and its biological properties. Journal of Physiology 110, 338–55.CrossRefGoogle Scholar
Laser, H. & Friedmann, E. (1945). Crystalline haemolytic substance from normal blood. Nature, London 156, 507.CrossRefGoogle Scholar
McChesney, E. W., Fasco, M. J. & Banks, W. F. (1967). The metabolism of chloroquine in man during and after repeated oral dosage. Journal of Pharmacology and Experimental Therapeutics 158, 323–31.Google Scholar
McCormick, G. J. (1970). Amino acid transport and incorporation in red blood cells of normal and Plasmodium knowlesi-infected Rhesus monkeys. Experimental Parasitology 27, 143–9.CrossRefGoogle ScholarPubMed
Mackerras, M. J. & Ercole, Q. N. (1949). Some observations on the action of quinine, atebrin, and plasmoquin on Plasmodium vivax. Transactions of the Royal Society of Tropical Medicine and Hygiene 42, 443–63.CrossRefGoogle Scholar
Macomber, P. B., O'Brien, R. L. & Hahn, F. E. (1966). Chloroquine: physiological basis of drug resistance in Plasmodium berghei. Science 152, 1374–5.CrossRefGoogle ScholarPubMed
Macomber, P. B., Sprinz, H. & Tousimis, A. J. (1967). Morphological effects of chloroquine on Plasmodium berghei in mice. Nature, London 214, 937–9.CrossRefGoogle ScholarPubMed
Maegraith, B. G. (1966). Pathological anatomy of Mediterranean and Tropical diseases. In Spezielle pathologische Anatomie (ed. Doerr, W. and Uehlinger, E.), 5, 381541. Springer-Verlag.Google Scholar
Maegraith, B. G. (1973). Malaria. In Spezielle pathologische Anatomie (ed. Doerr, W., Seifert, G. and Uehlinger, E.), 8, 319–49. Springer-Verlag.Google Scholar
Morrison, D. B. & Jeskey, H. A. (1947). The pigment, lipid, and proteins of the malaria parasite (Pl. knowlesi). Federation Proceedings 6, 279.Google Scholar
Morton, I. D. & Todd, A. R. (1950). The haemolytic acid present in horse brain. Biochemical Journal 47, 327–30.CrossRefGoogle ScholarPubMed
Overman, R. R. (1948). Reversible cellular permeability alterations in disease. In vivo studies on sodium, potassium, and chloride concentrations in erythrocytes of the malarious monkey. American Journal of Physiology 152, 113–21.CrossRefGoogle ScholarPubMed
Pelletier, J. & Caventou, J. B. (1820). Recherches chimiques sur les Quinquinas. Annales de chimie et de physique 15, 289318; 337–64.Google Scholar
Peters, W. (1967). A review of recent studies on chemotherapy and drug resistance in malaria parasites of birds and animals. Tropical Diseases Bulletin 64, 1145–75.Google ScholarPubMed
Peters, W. (1970). Chemotherapy and Drug Resistance in Malaria. New York and London: Academic Press.Google Scholar
Pethica, B. A. & Schulman, J. H. (1953). The physical chemistry of haemolysis by surface active agents. Biochemical Journal 53, 177–85.CrossRefGoogle ScholarPubMed
Polet, H. & Barr, C. F. (1968). Chloroquine and dihydroquinine: in vitro studies of their antimalarial effect upon Plasmodium knowlesi. Journal of Pharmacology and Experimental Therapeutics 164, 380–6.Google ScholarPubMed
Polis, B. D. & Shmukler, H. W. (1957). Mitochrome. I. Isolation and physicochemical properties. II. Enzymatic effects. Journal of Biological Chemistry 227, 419–40.CrossRefGoogle ScholarPubMed
Ponder, E. (1948). Haemolysis and Related Phenomena. Churchill: London.Google Scholar
Pullman, M. E. & Racker, E. (1956). Spectrophotometric studies of oxidative phosphorylation. Science 123, 1105–7.CrossRefGoogle ScholarPubMed
Riley, M. V. & Deegan, T. (1960). The effect of Plasmodium berghei malaria on mouse-liver mitochondria. Biochemical Journal 76, 41–6.CrossRefGoogle ScholarPubMed
Riley, M. V. & Maegraith, B. G. (1961). A factor in the serum of malaria-infected animals capable of inhibiting the in vitro oxidative metabolism of normal liver mitochondria. Annals of Tropical Medicine and Parasitology 55, 489–97.CrossRefGoogle ScholarPubMed
Rodbell, M. (1965). Modulation of lipolysis in adipose tissue by fatty acid concentration in fat cells. Annals of the New York Academy of Sciences 131, 302–14.CrossRefGoogle Scholar
Rozman, R. S. (1973). Chemotherapy of malaria. Annual Review of Pharmacology 13, 127–52.CrossRefGoogle ScholarPubMed
Schanker, L. S., Nafpliotis, P. A. & Johnson, J. M. (1961). Passage of organic bases into human red cells. Journal of Pharmacology and Experimental Therapeutics 133, 325–31.Google ScholarPubMed
Seeman, P. (1966). II. Erythrocyte membrane stabilization by local anaesthetics and tranquilizers. Biochemical Pharmacology 15, 1753–66.CrossRefGoogle Scholar
Seeman, P. & Weinstein, J. (1966). I. Erythrocyte membrane stabilization by tranquilizers and antihistamines. Biochemical Pharmacology 15, 1737–52.CrossRefGoogle Scholar
Shaw, E. H. (1928). The absorption of chemical compounds by red blood corpuscles and its therapeutic significance in the treatment of bird malaria. American Journal of Hygiene 8, 583603.Google Scholar
Sherman, I. W., Virkar, R. A. & Ruble, J. A. (1967). The accumulation of amino acids by Plasmodium lophurae (avian malaria). Comparative Biochemistry and Physiology 23, 4357.CrossRefGoogle ScholarPubMed
Teresi, J. D. & Luck, J. M. (1952). The combination of organic anions with serum albumin. VIII. Fatty acid salts. Journal of Biological Chemistry 194, 823–34.CrossRefGoogle ScholarPubMed
Wittels, B. & Hochstein, P. (1966). The effect of primaquine on lecithin metabolism in human orythrocytes. Biochimica et Biophysica Acta 125, 594–7.CrossRefGoogle Scholar
Wojtczak, L., Bogucka, K., Sarzala, M. G. & Zaluska, H. (1969). Effect of fatty acids on energy metabolism and the transport of adenine nucleotides in mitochondria and other cellular structures. Federation of European Biochemical Societies Symposia 17, 7992.Google Scholar
Woodward, R. B. & Doering, W. E. (1945). The total synthesis of quinine. Journal of the American Chemical Society 67, 860–74.CrossRefGoogle Scholar
World Health Organization. (1973). Chemotherapy of malaria and resistance to anti-malarials. WHO Technical Report Series No. 529.Google Scholar
Zuckerman, A. (1964). Autoimmunization and other types of indirect damage to host cells as factors in certain protozoan diseases. Parasitological review. Experimental Parasitology 15, 138–83.CrossRefGoogle Scholar