Skip to main content Accessibility help
×
×
Home

Mechanisms of naturally acquired immunity to P. falciparum and approaches to identify merozoite antigen targets

  • Julie Healer (a1) (a2), Chris Y. Chiu (a1) (a2) and Diana S. Hansen (a1) (a2)

Abstract

Malaria is one the most serious infectious diseases with over 200 million clinical cases annually. Most cases of the severe disease are caused by Plasmodium falciparum. The blood stage of Plasmodium parasite is entirely responsible for malaria-associated pathology. The population most susceptible to severe malaria are children under the age of 5, with low levels of immunity. It is only after many years of repeated exposure that individuals living in endemic areas develop clinical immunity. This form of protection prevents clinical episodes by substantially reducing parasite burden. Naturally acquired immunity predominantly targets blood-stage parasites with antibody responses being the main mediators of protection. The targets of clinical immunity are the extracellular merozoite and the infected erythrocyte surface, with the extremely diverse PfEMP1 proteins the main target here. This observation provides a strong rationale that an effective anti-malaria vaccine targeting blood-stage parasites is achievable. Thus the identification of antigenic targets of naturally acquired immunity remains an important step towards the formulation of novel vaccine combinations before testing their efficacy in clinical trials. This review summarizes the main findings to date defining antigenic targets present on the extracellular merozoite associated with naturally acquired immunity to P. falciparum malaria.

Copyright

Corresponding author

Author for correspondence: Julie Healer, E-mail: healer@wehi.edu.au

References

Hide All
Agak, GW, Bejon, P, Fegan, G, Gicheru, N, Villard, V, Kajava, AV, Marsh, K and Corradin, G (2008) Longitudinal analyses of immune responses to Plasmodium falciparum derived peptides corresponding to novel blood stage antigens in coastal Kenya. Vaccine 26, 19631971.
Ahlborg, N, Iqbal, J, Bjork, L, Stahl, S, Perlmann, P and Berzins, K (1996) Plasmodium falciparum: differential parasite growth inhibition mediated by antibodies to the antigens Pf332 and Pf155/RESA. Experimental Parasitology 82, 155163.
Amanna, IJ, Carlson, NE and Slifka, MK (2007) Duration of humoral immunity to common viral and vaccine antigens. New England Journal of Medicine 357, 19031915.
Bai, T, Becker, M, Gupta, A, Strike, P, Murphy, VJ, Anders, RF and Batchelor, AH (2005) Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proceedings of the National Academy of Sciences USA 102, 1273612741.
Baird, JK (1995) Host age as a determinant of naturally acquired immunity to Plasmodium falciparum. Parasitology Today 11, 105111.
Baird, JK, Jones, TR, Danudirgo, EW, Annis, BA, Bangs, MJ, Basri, H, Purnomo, Masbar, S (1991) Age-dependent acquired protection against Plasmodium falciparum in people having two years exposure to hyperendemic malaria. American Journal of Tropical Medicine and Hygeine 45, 6576.
Baum, J, Chen, L, Healer, J, Lopaticki, S, Boyle, M, Triglia, T, Ehlgen, F, Ralph, SA, Beeson, JG and Cowman, AF (2009) Reticulocyte-binding protein homologue 5 – an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. International Journal for Parasitology 39, 371380.
Bergmann-Leitner, ES, Duncan, EH and Angov, E (2009) MSP-1p42-specific antibodies affect growth and development of intra-erythrocytic parasites of Plasmodium falciparum. Malaria Journal 8, 183.
Biggs, BA, Goozé, L, Wycherley, K, Wollish, W, Southwell, B, Leech, JH and Brown, GV (1991) Antigenic variation in Plasmodium falciparum. Proceedings of the National Academy of Sciences USA 88, 91719174.
Blackman, MJ, Scott-Finnigan, TJ, Shai, S and Holder, AA (1994) Antibodies inhibit the protease-mediated processing of a malaria merozoite surface protein. Journal of Experimental Medicine 180, 389393.
Bouharoun-Tayoun, H, Oeuvray, C, Lunel, F and Druilhe, P (1995) Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. Journal of Experimental Medicine 182, 409418.
Boyle, MJ, Langer, C, Chan, JA, Hodder, AN, Coppel, RL, Anders, RF and Beeson, JG (2014) Sequential processing of merozoite surface proteins during and after erythrocyte invasion by Plasmodium falciparum. Infection & Immunity 82, 924936.
Boyle, MJ, Reiling, L, Feng, G, Langer, C, Osier, FH, Aspeling-Jones, H, Cheng, YS, Stubbs, J, Tetteh, KK, Conway, DJ, McCarthy, JS, Muller, I, Marsh, K, Anders, RF and Beeson, JG (2015) Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 42, 580590.
Bozdech, Z, Llinas, M, Pulliam, BL, Wong, ED, Zhu, J and DeRisi, JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biology 1, E5.
Cavanagh, DR, Elhassan, IM, Roper, C, Robinson, VJ, Giha, H, Holder, AA, Hviid, L, Theander, TG, Arnot, DE and McBride, JS (1998) A longitudinal study of type-specific antibody responses to Plasmodium falciparum merozoite surface protein-1 in an area of unstable malaria in Sudan. The Journal of Immunology 161, 347359.
Cavanagh, DR, Dodoo, D, Hviid, L, Kurtzhals, JA, Theander, TG, Akanmori, BD, Polley, S, Conway, DJ, Koram, K and McBride, JS (2004) Antibodies to the N-terminal block 2 of Plasmodium falciparum merozoite surface protein 1 are associated with protection against clinical malaria. Infection & Immunity 72, 64926502.
Celada, A, Cruchaud, A and Perrin, LH (1982) Opsonic activity of human immune serum on in vitro phagocytosis of Plasmodium falciparum infected red blood cells by monocytes. Clinical and Experimental Immunology 47, 635644.
Chen, L, Lopaticki, S, Riglar, DT, Dekiwadia, C, Uboldi, AD, Tham, WH, O'Neill, MT, Richard, D, Baum, J, Ralph, SA and Cowman, AF (2011) An EGF-like protein forms a complex with PfRh5 and is required for invasion of human erythrocytes by Plasmodium falciparum. PLoS Pathogens 7, e1002199.
Chen, L, Xu, Y, Healer, J, Thompson, JK, Smith, BJ, Lawrence, MC and Cowman, AF (2014) Crystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocytes. Elife 3.
Chen, L, Xu, Y, Wong, W, Thompson, JK, Healer, J, Goddard-Borger, ED, Lawrence, MC and Cowman, AF (2017) Structural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPA. Elife 6.
Chitarra, V, Holm, I, Bentley, GA, Petres, S and Longacre, S (1999) The crystal structure of C-terminal merozoite surface protein 1 at 1·8 A resolution, a highly protective malaria vaccine candidate. Molecular Cell 3, 457464.
Chiu, CY, Healer, J, Thompson, JK, Chen, L, Kaul, A, Savergave, L, Raghuwanshi, A, Li Wai Suen, CS, Siba, PM, Schofield, L, Mueller, I, Cowman, AF and Hansen, DS (2014) Association of antibodies to Plasmodium falciparum reticulocyte binding protein homolog 5 with protection from clinical malaria. Front Microbiol 5, 314.
Chiu, CY, Hodder, AN, Lin, CS, Hill, DL, Li Wai Suen, CS, Schofield, L, Siba, PM, Mueller, I, Cowman, AF and Hansen, DS (2015) Antibodies to the Plasmodium falciparum proteins MSPDBL1 and MSPDBL2 opsonize merozoites, inhibit parasite growth, and predict protection from clinical Malaria. Journal of Infectious Diseases 212, 406415.
Chiu, CY, White, MT, Healer, J, Thompson, JK, Siba, PM, Mueller, I, Cowman, AF and Hansen, DS (2016) Different regions of Plasmodium falciparum erythrocyte-binding antigen 175 induce antibody responses to infection of varied efficacy. Journal of Infectious Diseases 214, 96104.
Cohen, S and Butcher, GA (1970) Properties of protective malarial antibody. Nature 225, 732734.
Cohen, S and Butcher, GA (1971) Serum antibody in acquired malarial immunity. Transactions of the Royal Society of Tropical Medicine and Hygeine 65, 125135.
Cohen, S, McGregor, IA and Carrington, SC (1961) Gamma-globulin and acquired immunity to human malaria. Nature 192, 733737.
Cohen, S, Butcher, GA and Crandall, RB (1969) Action of malarial antibody in vitro. Nature 223, 368371.
Cole-Tobian, JL, Michon, P, Biasor, M, Richards, JS, Beeson, JG, Mueller, I and King, CL (2009) Strain-specific duffy binding protein antibodies correlate with protection against infection with homologous compared to heterologous Plasmodium vivax strains in Papua New Guinean children. Infection & Immunity 77, 40094017.
Cowman, AF and Crabb, BS (2006) Invasion of red blood cells by malaria parasites. Cell 124, 755766.
Cowman, AF, Healer, J, Marapana, D and Marsh, K (2016) Malaria: biology and disease. Cell 167, 610624.
Crompton, PD, Kayala, MA, Traore, B, Kayentao, K, Ongoiba, A, Weiss, GE, Molina, DM, Burk, CR, Waisberg, M, Jasinskas, A, Tan, X, Doumbo, S, Doumtabe, D, Kone, Y, Narum, DL, Liang, X, Doumbo, OK, Miller, LH, Doolan, DL, Baldi, P, Felgner, PL and Pierce, SK (2010 a). A prospective analysis of the Ab response to P lasmodium falciparum before and after a malaria season by protein microarray. Proceedings of the National Academy of Sciences USA 107, 69586963.
Crompton, PD, Miura, K, Traore, B, Kayentao, K, Ongoiba, A, Weiss, G, Doumbo, S, Doumtabe, D, Kone, Y, Huang, CY, Doumbo, OK, Miller, LH, Long, CA and Pierce, SK (2010 b). In vitro growth-inhibitory activity and malaria risk in a cohort study in Mali. Infection & Immunity 78, 737745.
Crosnier, C, Wanaguru, M, McDade, B, Osier, FH, Marsh, K, Rayner, JC and Wright, GJ (2013) A library of functional recombinant cell-surface and secreted P. falciparum merozoite proteins. Molecular and Cellular Proteomics 12, 39763986.
Davies, DH, Liang, X, Hernandez, JE, Randall, A, Hirst, S, Mu, Y, Romero, KM, Nguyen, TT, Kalantari-Dehaghi, M, Crotty, S, Baldi, P, Villarreal, LP and Felgner, PL (2005) Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proceedings of the National Academy of Sciences USA 102, 547552.
Davies, DH, Duffy, P, Bodmer, JL, Felgner, PL and Doolan, DL (2015) Large screen approaches to identify novel malaria vaccine candidates. Vaccine 33, 74967505.
Dent, AE, Bergmann-Leitner, ES, Wilson, DW, Tisch, DJ, Kimmel, R, Vulule, J, Sumba, PO, Beeson, JG, Angov, E, Moormann, AM and Kazura, JW (2008) Antibody-mediated growth inhibition of Plasmodium falciparum: relationship to age and protection from parasitemia in Kenyan children and adults. PLoS ONE 3, e3557.
Dent, AE, Moormann, AM, Yohn, CT, Kimmel, RJ, Sumba, PO, Vulule, J, Long, CA, Narum, DL, Crabb, BS, Kazura, JW and Tisch, DJ (2012) Broadly reactive antibodies specific for Plasmodium falciparum MSP-1(19) are associated with the protection of naturally exposed children against infection. Malaria Journal 11, 287.
Dent, AE, Nakajima, R, Liang, L, Baum, E, Moormann, AM, Sumba, PO, Vulule, J, Babineau, D, Randall, A, Davies, DH, Felgner, PL and Kazura, JW (2015) Plasmodium falciparum protein microarray antibody profiles correlate with protection from symptomatic Malaria in Kenya. Journal of Infectious Diseases 212, 14291438.
Didierlaurent, AM, Laupeze, B, Di Pasquale, A, Hergli, N, Collignon, C and Garcon, N (2017) Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Review of Vaccines 16, 5563.
Dluzewski, AR, Ling, IT, Hopkins, JM, Grainger, M, Margos, G, Mitchell, GH, Holder, AA and Bannister, LH (2008) Formation of the food vacuole in P lasmodium falciparum: a potential role for the 19 kDa fragment of merozoite surface protein 1 (MSP1(19)). PLoS ONE 3, e3085.
Doolan, DL, Mu, Y, Unal, B, Sundaresh, S, Hirst, S, Valdez, C, Randall, A, Molina, D, Liang, X, Freilich, DA, Oloo, JA, Blair, PL, Aguiar, JC, Baldi, P, Davies, DH and Felgner, PL (2008) Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 8, 46804694.
Douglas, AD, Baldeviano, GC, Lucas, CM, Lugo-Roman, LA, Crosnier, C, Bartholdson, SJ, Diouf, A, Miura, K, Lambert, LE, Ventocilla, JA, Leiva, KP, Milne, KH, Illingworth, JJ, Spencer, AJ, Hjerrild, KA, Alanine, DG, Turner, AV, Moorhead, JT, Edgel, KA, Wu, Y, Long, CA, Wright, GJ, Lescano, AG and Draper, SJ (2015) A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in Aotus monkeys. Cell Host & Microbe 17, 130139.
Elshal, MF and McCoy, JP (2006) Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38, 317323.
Favuzza, P, Guffart, E, Tamborrini, M, Scherer, B, Dreyer, AM, Rufer, AC, Erny, J, Hoernschemeyer, J, Thoma, R, Schmid, G, Gsell, B, Lamelas, A, Benz, J, Joseph, C, Matile, H, Pluschke, G and Rudolph, MG (2017) Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody. Elife 6.
Florens, L., Washburn, MP, Raine, JD, Anthony, RM, Grainger, M, Haynes, JD, Moch, JK, Muster, N, Sacci, JB, Tabb, DL, Witney, AA, Wolters, D, Wu, Y, Gardner, MJ, Holder, AA, Sinden, RE, Yates, JR and Carucci, DJ (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520526.
Fowkes, FJ, Richards, JS, Simpson, JA and Beeson, JG (2010) The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: a systematic review and meta-analysis. PLoS Medicine 7, e1000218.
Fried, M, Nosten, F, Brockman, A, Brabin, BJ and Duffy, PE (1998) Maternal antibodies block malaria. Nature 395, 851852.
Gardner, MJ, Hall, N, Fung, E, White, O, Berriman, M, Hyman, RW, Carlton, JM, Pain, A, Nelson, KE, Bowman, S, Paulsen, IT, James, K, Eisen, JA, Rutherford, K, Salzberg, SL, Craig, A, Kyes, S, Chan, MS, Nene, V, Shallom, SJ, Suh, B, Peterson, J, Angiuoli, S, Pertea, M, Allen, J, Selengut, J, Haft, D, Mather, MW, Vaidya, AB, Martin, DM, Fairlamb, AH, Fraunholz, MJ, Roos, DS, Ralph, SA, McFadden, GI, Cummings, LM, Subramanian, GM, Mungall, C, Venter, JC, Carucci, DJ, Hoffman, SL, Newbold, C, Davis, RW, Fraser, CM and Barrell, B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498511.
Gilson, PR, Nebl, T, Vukcevic, D, Moritz, RL, Sargeant, T, Speed, TP, Schofield, L and Crabb, BS (2006) Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Molecular and Cellular Proteomics 5, 12861299.
Gilson, PR, O'Donnell, RA, Nebl, T, Sanders, PR, Wickham, ME, McElwain, TF, de Koning-Ward, TF and Crabb, BS (2008) MSP1(19) miniproteins can serve as targets for invasion inhibitory antibodies in Plasmodium falciparum provided they contain the correct domains for cell surface trafficking. Molecular Microbiology 68, 124138.
Gomez-Escobar, N, Amambua-Ngwa, A, Walther, M, Okebe, J, Ebonyi, A and Conway, DJ (2010) Erythrocyte invasion and merozoite ligand gene expression in severe and mild Plasmodium falciparum malaria. Journal of Infectious Diseases 201, 444452.
Green, TJ, Morhardt, M, Brackett, RG and Jacobs, RL (1981) Serum inhibition of merozoite dispersal from Plasmodium falciparum schizonts: indicator of immune status. Infection & Immunity 31, 12031208.
Gupta, S, Snow, RW, Donnelly, CA, Marsh, K and Newbold, C (1999) Immunity to non-cerebral severe malaria is acquired after one or two infections. Natural Medicines 5, 340343.
Hammarlund, E, Lewis, MW, Hansen, SG, Strelow, LI, Nelson, JA, Sexton, GJ, Hanifin, JM and Slifka, MK (2003) Duration of antiviral immunity after smallpox vaccination. Natural Medicines 9, 11311137.
Hansen, DS, Obeng-Adjei, N, Ly, A, Ioannidis, LJ and Crompton, PD (2017) Emerging concepts in T follicular helper cell responses to malaria. International Journal for Parasitology 47, 105110.
Hill, DL, Eriksson, EM, Carmagnac, AB, Wilson, DW, Cowman, AF, Hansen, DS and Schofield, L (2012) Efficient measurement of opsonising antibodies to Plasmodium falciparum merozoites. PLoS ONE 7, e51692.
Hill, DL, Eriksson, EM, Li Wai Suen, CS, Chiu, CY, Ryg-Cornejo, V, Robinson, LJ, Siba, PM, Mueller, I, Hansen, DS and Schofield, L (2013) Opsonising antibodies to P. falciparum merozoites associated with immunity to clinical malaria. PLoS ONE 8, e74627.
Hodder, AN, Crewther, PE and Anders, RF (2001) Specificity of the protective antibody response to apical membrane antigen 1. Infection & Immunity 69, 32863294.
Jensen, JB, Boland, MT and Akood, M (1982) Induction of crisis forms in cultured Plasmodium falciparum with human immune serum from Sudan. Science 216, 12301233.
Joergensen, LM, Salanti, A, Dobrilovic, T, Barfod, L, Hassenkam, T, Theander, TG, Hviid, L and Arnot, DE (2010) The kinetics of antibody binding to Plasmodium falciparum VAR2CSA PfEMP1 antigen and modelling of PfEMP1 antigen packing on the membrane knobs. Malaria Journal 9, 100.
Joos, C, Marrama, L, Polson, HE, Corre, S, Diatta, AM, Diouf, B, Trape, JF, Tall, A, Longacre, S and Perraut, R (2010) Clinical protection from falciparum malaria correlates with neutrophil respiratory bursts induced by merozoites opsonized with human serum antibodies. PLoS ONE 5, e9871.
Kapelski, S, Klockenbring, T, Fischer, R, Barth, S and Fendel, R (2014) Assessment of the neutrophilic antibody-dependent respiratory burst (ADRB) response to Plasmodium falciparum. Journal of Leukocyte Biology 96, 11311142.
Kauth, CW, Woehlbier, U, Kern, M, Mekonnen, Z, Lutz, R, Mucke, N, Langowski, J and Bujard, H (2006) Interactions between merozoite surface proteins 1, 6, and 7 of the malaria parasite Plasmodium falciparum. Journal of Biological Chemistry 281, 3151731527.
Kennedy, AT, Schmidt, CQ, Thompson, JK, Weiss, GE, Taechalertpaisarn, T, Gilson, PR, Barlow, PN, Crabb, BS, Cowman, AF and Tham, WH (2016) Recruitment of factor H as a novel complement evasion strategy for blood-stage Plasmodium falciparum infection. The Journal of Immunology 196, 12391248.
Khusmith, S, Druilhe, P and Gentilini, M (1982) Enhanced Plasmodium falciparum merozoite phagocytosis by monocytes from immune individuals. Infection & Immunity 35, 874879.
Kinyanjui, SM, Bull, P, Newbold, CI and Marsh, K (2003) Kinetics of antibody responses to Plasmodium falciparum-infected erythrocyte variant surface antigens. Journal of Infectious Diseases 187, 667674.
Kinyanjui, SM, Conway, DJ, Lanar, DE and Marsh, K (2007) Igg antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life. Malaria Journal 6, 82.
Le Roch, KG, Zhou, Y, Blair, PL, Grainger, M, Moch, JK, Haynes, JD, De La Vega, P, Holder, AA, Batalov, S, Carucci, DJ and Winzeler, EA (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 15031508.
Lin, CS, Uboldi, AD, Marapana, D, Czabotar, PE, Epp, C, Bujard, H, Taylor, NL, Perugini, MA, Hodder, AN and Cowman, AF (2014) The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. Journal of Biological Chemistry 289, 2565525669.
Lin, CS, Uboldi, AD, Epp, C, Bujard, H, Tsuboi, T, Czabotar, PE and Cowman, AF (2016) Multiple Plasmodium falciparum merozoite surface protein 1 complexes mediate merozoite binding to human erythrocytes. Journal of Biological Chemistry 291, 77037715.
Lin, DH, Malpede, BM, Batchelor, JD and Tolia, NH (2012) Crystal and solution structures of Plasmodium falciparum erythrocyte-binding antigen 140 reveal determinants of receptor specificity during erythrocyte invasion. Journal of Biological Chemistry 287, 3683036836.
Llewellyn, D, Miura, K, Fay, MP, Williams, AR, Murungi, LM, Shi, J, Hodgson, SH, Douglas, AD, Osier, FH, Fairhurst, RM, Diakite, M, Pleass, RJ, Long, CA and Draper, SJ (2015) Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria. Scientific Reports 5, 14081.
Lyon, JA, Thomas, AW, Hall, T and Chulay, JD (1989) Specificities of antibodies that inhibit merozoite dispersal from malaria-infected erythrocytes. Molecular and Biochemical Parasitology 36, 7786.
Maple, PA, Jones, CS, Wall, EC, Vyseb, A, Edmunds, WJ, Andrews, NJ and Miller, E (2000) Immunity to diphtheria and tetanus in England and Wales. Vaccine 19, 167173.
Marsh, K and Kinyanjui, S (2006) Immune effector mechanisms in malaria. Parasite Immunology 28, 5160.
McCarra, MB, Ayodo, G, Sumba, PO, Kazura, JW, Moormann, AM, Narum, DL and John, CC (2011) Antibodies to Plasmodium falciparum erythrocyte-binding antigen-175 are associated with protection from clinical malaria. Pediatric Infectious Disease Journal 30, 10371042.
McGregor, IA (1964) The passive transfer of human malarial immunity. American Journal of Tropical Medicine and Hygeine 13, 237239.
Miura, K, Zhou, H, Moretz, SE, Diouf, A, Thera, MA, Dolo, A, Doumbo, O, Malkin, E, Diemert, D, Miller, LH, Mullen, GE and Long, CA (2008) Comparison of biological activity of human anti-apical membrane antigen-1 antibodies induced by natural infection and vaccination. The Journal of Immunology 181, 87768783.
Mugyenyi, CK, Elliott, SR, McCallum, FJ, Anders, RF, Marsh, K and Beeson, JG (2013) Antibodies to polymorphic invasion-inhibitory and non-inhibitory epitopes of Plasmodium falciparum apical membrane antigen 1 in human malaria. PLoS ONE 8, e68304.
Murungi, LM, Sonden, K, Llewellyn, D, Rono, J, Guleid, F, Williams, AR, Ogada, E, Thairu, A, Farnert, A, Marsh, K, Draper, SJ and Osier, FH (2016) Targets and mechanisms associated with protection from severe Plasmodium falciparum Malaria in Kenyan children. Infection & Immunity 84, 950963.
Newman, SL and Mikus, LK (1985) Deposition of C3b and iC3b onto particulate activators of the human complement system. Quantitation with monoclonal antibodies to human C3. Journal of Biological Chemistry 161, 14141431.
Obeng-Adjei, N, Portugal, S, Tran, TM, Yazew, TB, Skinner, J, Li, S, Jain, A, Felgner, PL, Doumbo, OK, Kayentao, K, Ongoiba, A, Traore, B and Crompton, PD (2015) Circulating Th1-cell-type Tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children. Cell Reports 13, 425439.
Ogutu, BR, Apollo, OJ, McKinney, D, Okoth, W, Siangla, J, Dubovsky, F, Tucker, K, Waitumbi, JN, Diggs, C, Wittes, J, Malkin, E, Leach, A, Soisson, LA, Milman, JB, Otieno, L, Holland, CA, Polhemus, M, Remich, SA, Ockenhouse, CF, Cohen, J, Ballou, WR, Martin, SK, Angov, E, Stewart, VA, Lyon, JA, Heppner, DG and Withers, MR (2009) Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS ONE 4, e4708.
Okell, LC, Ghani, AC, Lyons, E and Drakeley, CJ (2009) Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. Journal of Infectious Diseases 200, 15091517.
Osier, FH, Feng, G, Boyle, MJ, Langer, C, Zhou, J, Richards, JS, McCallum, FJ, Reiling, L, Jaworowski, A, Anders, RF, Marsh, K and Beeson, JG (2014 a). Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. BMC Medicine 12, 108.
Osier, FH, Mackinnon, MJ, Crosnier, C, Fegan, G, Kamuyu, G, Wanaguru, M, Ogada, E, McDade, B, Rayner, JC, Wright, GJ and Marsh, K (2014 b). New antigens for a multicomponent blood-stage malaria vaccine. Science Translation Medicine 6, 247ra102.
Pang, XL, Mitamura, T and Horii, T (1999) Antibodies reactive with the N-terminal domain of Plasmodium falciparum serine repeat antigen inhibit cell proliferation by agglutinating merozoites and schizonts. Infection & Immunity 67, 18211827.
Persson, KE, Lee, CT, Marsh, K and Beeson, JG (2006) Development and optimization of high-throughput methods to measure Plasmodium falciparum-specific growth inhibitory antibodies. Journal of Clinical Microbiology 44, 16651673.
Pizarro, JC, Vulliez-Le Normand, B, Chesne-Seck, ML, Collins, CR, Withers-Martinez, C, Hackett, F, Blackman, MJ, Faber, BW, Remarque, EJ, Kocken, CH, Thomas, AW and Bentley, GA (2005) Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science 308, 408411.
Pouvelle, B and Gysin, J (1997) Presence of the parasitophorous duct in Plasmodium falciparum and P. vivax parasitized Saimiri monkey red blood cells. Parasitology Today 13, 357361.
Raj, DK, Nixon, CP, Nixon, CE, Dvorin, JD, DiPetrillo, CG, Pond-Tor, S, Wu, HW, Jolly, G, Pischel, L, Lu, A, Michelow, IC, Cheng, L, Conteh, S, McDonald, EA, Absalon, S, Holte, SE, Friedman, JF, Fried, M, Duffy, PE and Kurtis, JD (2014) Antibodies to PfSEA-1 block parasite egress from RBCs and protect against malaria infection. Science 344, 871877.
Ramasamy, R, Yasawardena, S, Kanagaratnam, R, Buratti, E, Baralle, FE and Ramasamy, MS (1999) Antibodies to a merozoite surface protein promote multiple invasion of red blood cells by malaria parasites. Parasite Immunology 21, 397407.
Reddy, KS, Amlabu, E, Pandey, AK, Mitra, P, Chauhan, VS and Gaur, D (2015) Multiprotein complex between the GPI-anchored CyRPA with PfRH5 and PfRipr is crucial for Plasmodium falciparum erythrocyte invasion. Proceedings of the National Academy of Sciences USA 112, 11791184.
Reiling, L, Richards, JS, Fowkes, FJ, Barry, AE, Triglia, T, Chokejindachai, W, Michon, P, Tavul, L, Siba, PM, Cowman, AF, Mueller, I and Beeson, JG (2010) Evidence that the erythrocyte invasion ligand PfRh2 is a target of protective immunity against Plasmodium falciparum malaria. The Journal of Immunology 185, 61576167.
Reiling, L, Richards, JS, Fowkes, FJ, Wilson, DW, Chokejindachai, W, Barry, AE, Tham, WH, Stubbs, J, Langer, C, Donelson, J, Michon, P, Tavul, L, Crabb, BS, Siba, PM, Cowman, AF, Mueller, I and Beeson, JG (2012) The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria. PLoS ONE 7, e45253.
Richards, JS, Stanisic, DI, Fowkes, FJ, Tavul, L, Dabod, E, Thompson, JK, Kumar, S, Chitnis, CE, Narum, DL, Michon, P, Siba, PM, Cowman, AF, Mueller, I and Beeson, JG (2010) Association between naturally acquired antibodies to erythrocyte-binding antigens of Plasmodium falciparum and protection from malaria and high-density parasitemia. Clinical Infectious Diseases 51, e50e60.
Richards, JS, Arumugam, TU, Reiling, L, Healer, J, Hodder, AN, Fowkes, FJ, Cross, N, Langer, C, Takeo, S, Uboldi, AD, Thompson, JK, Gilson, PR, Coppel, RL, Siba, PM, King, CL, Torii, M, Chitnis, CE, Narum, DL, Mueller, I, Crabb, BS, Cowman, AF, Tsuboi, T and Beeson, JG (2013) Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. The Journal of Immunology 191, 795809.
Roberts, DJ, Craig, AG, Berendt, AR, Pinches, R, Nash, G, Marsh, G and Newbold, CI (1992) Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357, 689692.
Ryg-Cornejo, V, Ioannidis, LJ, Ly, A, Chiu, CY, Tellier, J, Hill, DL, Preston, SP, Pellegrini, M, Yu, D, Nutt, SL, Kallies, A and Hansen, DS (2016 a). Severe Malaria infections impair germinal center responses by inhibiting T follicular helper cell differentiation. Cell Reports 14, 6881.
Ryg-Cornejo, V, Ly, A and Hansen, DS (2016 b). Immunological processes underlying the slow acquisition of humoral immunity to malaria. Parasitology 143, 199207.
Salanti, A, Dahlback, M, Turner, L, Nielsen, MA, Barfod, L, Magistrado, P, Jensen, AT, Lavstsen, T, Ofori, MF, Marsh, K, Hviid, L and Theander, TG (2004) Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. Journal of Experimental Medicine 200, 11971203.
Scherf, A, Lopez-Rubio, JJ and Riviere, L (2008) Antigenic variation in Plasmodium falciparum. Annual Reviews of Microbiology 62, 445470.
Schofield, L and Grau, GE (2005) Immunological processes in malaria pathogenesis. Nature Reviews Immunology 5, 722735.
Schofield, L and Mueller, I (2006) Clinical immunity to malaria. Current Molecular Medicine 6, 205221.
Silver, KL, Higgins, SJ, McDonald, CR and Kain, KC (2010) Complement driven innate immune response to malaria: fuelling severe malarial diseases. Cellular Microbiology 12, 10361045.
Simon, N, Lasonder, E, Scheuermayer, M, Kuehn, A, Tews, S, Fischer, R, Zipfel, PF, Skerka, C and Pradel, G (2013) Malaria parasites co-opt human factor H to prevent complement-mediated lysis in the mosquito midgut. Cell Host & Microbe 13, 2941.
Srinivasan, P, Beatty, WL, Diouf, A, Herrera, R, Ambroggio, X, Moch, JK, Tyler, JS, Narum, DL, Pierce, SK, Boothroyd, JC, Haynes, JD and Miller, LH (2011) Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proceedings of the National Academy of Sciences USA 108, 1327513280.
Stanisic, DI and Good, MF (2016) Examining cellular immune responses to inform development of a blood-stage malaria vaccine. Parasitology 143, 208223.
Stanisic, DI, Richards, JS, McCallum, FJ, Michon, P, King, CL, Schoepflin, S, Gilson, PR, Murphy, VJ, Anders, RF, Mueller, I and Beeson, JG (2009) Immunoglobulin G subclass-specific responses against Plasmodium falciparum merozoite antigens are associated with control of parasitemia and protection from symptomatic illness. Infection & Immunity 77, 11651174.
Sun, T and Chakrabarti, C (1985) Schizonts, merozoites, and phagocytosis in falciparum malaria. Annals of Clinical and Laboratory Science 15, 465469.
Tham, WH, Healer, J and Cowman, AF (2012) Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends in Parasitology 28, 2330.
Tiendrebeogo, RW, Adu, B, Singh, SK, Dziegiel, MH, Nebie, I, Sirima, SB, Christiansen, M, Dodoo, D and Theisen, M (2015) Antibody-dependent cellular inhibition is associated with reduced risk against febrile Malaria in a longitudinal cohort study involving Ghanaian children. Open Forum Infectious Diseases 2, ofv044.
Tolia, NH, Enemark, EJ, Sim, BK and Joshua-Tor, L (2005) Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell 122, 183193.
Tran, TM, Ongoiba, A, Coursen, J, Crosnier, C, Diouf, A, Huang, CY, Li, S, Doumbo, S, Doumtabe, D, Kone, Y, Bathily, A, Dia, S, Niangaly, M, Dara, C, Sangala, J, Miller, LH, Doumbo, OK, Kayentao, K, Long, CA, Miura, K, Wright, GJ, Traore, B and Crompton, PD (2014) Naturally acquired antibodies specific for Plasmodium falciparum reticulocyte-binding protein homologue 5 inhibit parasite growth and predict protection from malaria. Journal of Infectious Diseases 209, 789798.
Tsuboi, T, Takeo, S, Arumugam, TU, Otsuki, H and Torii, M (2010) The wheat germ cell-free protein synthesis system: a key tool for novel malaria vaccine candidate discovery. Acta Tropica 114, 171176.
Turrini, F, Ginsburg, H, Bussolino, F, Pescarmona, GP, Serra, MV and Arese, P (1992) Phagocytosis of Plasmodium falciparum-infected human red blood cells by human monocytes: involvement of immune and nonimmune determinants and dependence on parasite developmental stage. Blood 80, 801808.
Volz, JC, Yap, A, Sisquella, X, Thompson, JK, Lim, NT, Whitehead, LW, Chen, L, Lampe, M, Tham, WH, Wilson, D, Nebl, T, Marapana, D, Triglia, T, Wong, W, Rogers, KL and Cowman, AF (2016) Essential role of the PfRh5/PfRipr/CyRPA complex during Plasmodium falciparum invasion of erythrocytes. Cell Host & Microbe 20, 6071.
Weiss, GE, Traore, B, Kayentao, K, Ongoiba, A, Doumbo, S, Doumtabe, D, Kone, Y, Dia, S, Guindo, A, Traore, A, Huang, CY, Miura, K, Mircetic, M, Li, S, Baughman, A, Narum, DL, Miller, LH, Doumbo, OK, Pierce, SK and Crompton, PD (2010) The Plasmodium falciparum-specific human memory B cell compartment expands gradually with repeated malaria infections. PLoS Pathogens 6, e1000912.
Weiss, GE, Crabb, BS and Gilson, PR (2016) Overlaying molecular and temporal aspects of malaria parasite invasion. Trends in Parasitology 32, 284295.
Wilson, DW, Fowkes, FJ, Gilson, PR, Elliott, SR, Tavul, L, Michon, P, Dabod, E, Siba, PM, Mueller, I, Crabb, BS and Beeson, JG (2011) Quantifying the importance of MSP1-19 as a target of growth-inhibitory and protective antibodies against Plasmodium falciparum in humans. PLoS ONE 6, e27705.
Wipasa, J, Suphavilai, C, Okell, LC, Cook, J, Corran, PH, Thaikla, K, Liewsaree, W, Riley, EM and Hafalla, JC (2010) Long-lived antibody and B cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS Pathogens 6, e1000770.
Witko-Sarsat, V, Rieu, P, Descamps-Latscha, B, Lesavre, P and Halbwachs-Mecarelli, L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Laboratory Investigation 80, 617653.
World Health Organization (2016) World Malaria report 2016.
Wright, KE, Hjerrild, KA, Bartlett, J, Douglas, AD, Jin, J, Brown, RE, Illingworth, JJ, Ashfield, R, Clemmensen, SB, de Jongh, WA, Draper, SJ and Higgins, MK (2014) Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature 515, 427430.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed