Skip to main content
×
Home
    • Aa
    • Aa

A new approach to modelling schistosomiasis transmission based on stratified worm burden

  • D. GURARIE (a1), C. H. KING (a2) and X. WANG (a1)
Summary
SUMMARY

Background/Objective. Multiple factors affect schistosomiasis transmission in distributed meta-population systems including age, behaviour, and environment. The traditional approach to modelling macroparasite transmission often exploits the ‘mean worm burden’ (MWB) formulation for human hosts. However, typical worm distribution in humans is overdispersed, and classic models either ignore this characteristic or make ad hoc assumptions about its pattern (e.g., by assuming a negative binomial distribution). Such oversimplifications can give wrong predictions for the impact of control interventions. Methods. We propose a new modelling approach to macro-parasite transmission by stratifying human populations according to worm burden, and replacing MWB dynamics with that of ‘population strata’. We developed proper calibration procedures for such multi-component systems, based on typical epidemiological and demographic field data, and implemented them using Wolfram Mathematica. Results. Model programming and calibration proved to be straightforward. Our calibrated system provided good agreement with the individual level field data from the Msambweni region of eastern Kenya. Conclusion. The Stratified Worm Burden (SWB) approach offers many advantages, in that it accounts naturally for overdispersion and accommodates other important factors and measures of human infection and demographics. Future work will apply this model and methodology to evaluate innovative control intervention strategies, including expanded drug treatment programmes proposed by the World Health Organization and its partners.

Copyright
Corresponding author
*Corresponding author: Department of Mathematics, 220 Yost Hall, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-7058, USA. Tel: 001 216 368 2857. Fax: 001 216 368 5163. E-mail: dxg5@cwru.edu
References
Hide All
Alexander N., Moyeed R. and Stander J. (2000). Spatial modelling of individual-level parasite counts using the negative binomial distribution. Biostatistics 1, 453463.
Anderson R. M. and May R. M. (1978 a). Regulation and stability of host-parasite population interactions. I. Journal of Animal Ecology 47, 219247.
Anderson R. M. and May R. M. (1978 b). Regulation and stability of host-parasite population interactions. II. Journal of Animal Ecology 47, 249267.
Anderson R. M. and May R. M. (1991). Infectious Diseases of Humans. Dynamics and Control. Oxford University Press, New York, USA.
Chan M. S. and Bundy D. A. (1997). Modelling the dynamic effects of community chemotherapy on patterns of morbidity due to Schistosoma mansoni. Transactions of the Royal Society of Tropical Medicine and Hygiene 91, 216220.
Chan M. S., Guyatt H. L., Bundy D. A. and Medley G. F. (1996). Dynamic models of schistosomiasis morbidity. American Journal of Tropical Medicine and Hygiene 55, 5262.
Clennon J. A., Mungai P. L., Muchiri E. M., King C. H. and Kitron U. (2006). Spatial and temporal variations in local transmission of Schistosoma haematobium in Msambweni, Kenya. American Journal of Tropical Medicine and Hygiene 75, 10341041.
Dobson A. and Roberts M. (1994). The population dynamics of parasitic helminth communities. Parasitology 109, (Suppl.) S97S108.
Feng Z., Curtis J. and Minchella D. J. (2001). The influence of drug treatment on the maintenance of schistosome genetic diversity. Journal of Mathematical Biology 43, 5268.
Gabrielli A. F., Toure S., Sellin B., Sellin E., Ky C., Ouedraogo H., Yaogho M., Wilson M. D., Thompson H., Sanou S. and Fenwick A. (2006). A combined school- and community-based campaign targeting all school-age children of Burkina Faso against schistosomiasis and soil-transmitted helminthiasis: performance, financial costs and implications for sustainability. Acta Tropica 99, 234242.
Gurarie D. and King C. H. (2005). Heterogeneous model of schistosomiasis transmission and long-term control: the combined influence of spatial variation and age-dependent factors on optimal allocation of drug therapy. Parasitology 130, 4965.
Gurarie D. and King C. H. (2008). Age- and risk-targeted control of schistosomiasis-associated morbidity among children and adult age groups. The Open Tropical Medicine Journal 1, 2130.
Gurarie D. and Seto E. Y. (2009). Connectivity sustains disease transmission in environments with low potential for endemicity: modelling schistosomiasis with hydrologic and social connectivities. Journal of the Royal Society Interface 6, 495508. doi: 10.1098/rsif.2008.0265.
Hamburger J., Hoffman O., Kariuki H. C., Muchiri E. M., Ouma J. H., Koech D. K., Sturrock R. F. and King C. H. (2004). Large-scale, polymerase chain reaction-based surveillance of Schistosoma haematobium DNA in snails from transmission sites in coastal Kenya: A new tool for studying the dynamics of snail infection. American Journal of Tropical Medicine and Hygiene 71, 765773.
Kariuki H. C., Clennon J. A., Brady M. S., Kitron U., Sturrock R. F., Ouma J. H., Ndzovu S. T., Mungai P., Hoffman O., Hamburger J., Pellegrini C., Muchiri E. M. and King C. H. (2004). Distribution patterns and cercarial shedding of Bulinus nasutus and other snails in the Msambweni area, Coast Province, Kenya. American Journal of Tropical Medicine and Hygiene 70, 449456.
Macdonald G. (1965). The dynamics of helminth infections, with special reference to schistosomes. Transactions of the Royal Society of Tropical Medicine and Hygiene 59, 489506.
Medley G. F. and Bundy D. A. (1996). Dynamic modeling of epidemiologic patterns of schistosomiasis morbidity. American Journal of Tropical Medicine and Hygiene 55, 149158.
Muchiri E. M., Ouma J. H. and King C. H. (1996). Dynamics and control of Schistosoma haematobium transmission in Kenya: an overview of the Msambweni Project. American Journal of Tropical Medicine and Hygiene 55, 127134.
Nasell I. (1978). Mating for schistosomes. Journal of Mathematical Biology 6, 2135.
Pugliese A. (2000). Coexistence of macroparasites without direct interactions. Theoretical Population Biology 57, 145165. doi: S0040-5809(99)91443-0 [pii].
Riley S., Carabin H., Belisle P., Joseph L., Tallo V., Balolong E., Willingham A. L., Fernandez T. J., Gonzales R. O., Olveda R. and Mcgarvey S. T. (2008). Multi-host transmission dynamics of Schistosoma japonicum in Samar province, the Philippines. PLoS Med 5, e18. doi: 10.1371/journal.pmed.0050018.
Rosa R. and Pugliese A. (2002). Aggregation, stability, and oscillations in different models for host-macroparasite interactions. Theoretical Population Biology 61, 319334. doi: 10.1006/tpbi.2002.1575
Sturrock R. F., Kinyanjui H., Thiongo F. W., Tosha S., Ouma J. H., King C. H., Koech D., Siongok T. K. and Mahmoud A. A. (1990). Chemotherapy-based control of schistosomiasis haematobia. 3. Snail studies monitoring the effect of chemotherapy on transmission in the Msambweni area, Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 257261.
Van Der Werf M. J. and De Vlas S. J. (2001). Morbidity and Infection with Schistosomes or Soil-Transmitted Helminths. Report for WHO Parasitic Diseases and Vector Contol. pp. 1103. Erasmus University, Rotterdam, The Netherlands.
de Vlas S. J., Engels D., Rabello A. L., Oostburg B. F., Van Lieshout L., Polderman A. M., Van Oortmarssen G. J., Habbema J. D. and Gryseels B. (1997). Validation of a chart to estimate true Schistosoma mansoni prevalences from simple egg counts. Parasitology 114, 113121.
Wilson R. A., Dam G. J., Kariuki T. M., Farah I. O., Deedler A. M. and Coulson P. S. (2006). The detection limits for estimates of infection intensity in schistosomiasis mansoni established by a study in non-human primates. International Journal for Parasitology 36, 12411244.
World Health Organization (2006). Preventive Chemotherapy in Human Helminthiasis: Coordinated Use of Anthelminthic Drugs in Control Interventions: a Manual for Health Professionals and Programme Managers. World Health Organization Press, Geneva, Switzerland.
Woolhouse M. E. (1991). On the application of mathematical models of schistosome transmission dynamics. I. Natural transmission. Acta Tropica 49, 241270.
Woolhouse M. E., Watts C. H. and Chandiwana S. K. (1991). Heterogeneities in transmission rates and the epidemiology of schistosome infection. Proceedings of the Royal Society of London, B 245, 109114.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 109 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.