Skip to main content
    • Aa
    • Aa

Optimality analysis of Th1/Th2 immune responses during microparasite-macroparasite co-infection, with epidemiological feedbacks


Individuals are typically co-infected by a diverse community of microparasites (e.g. viruses or protozoa) and macroparasites (e.g. helminths). Vertebrates respond to these parasites differently, typically mounting T helper type 1 (Th1) responses against microparasites and Th2 responses against macroparasites. These two responses may be antagonistic such that hosts face a ‘decision’ of how to allocate potentially limiting resources. Such decisions at the individual host level will influence parasite abundance at the population level which, in turn, will feed back upon the individual level. We take a first step towards a complete theoretical framework by placing an analysis of optimal immune responses under microparasite-macroparasite co-infection within an epidemiological framework. We show that the optimal immune allocation is quantitatively sensitive to the shape of the trade-off curve and qualitatively sensitive to life-history traits of the host, microparasite and macroparasite. This model represents an important first step in placing optimality models of the immune response to co-infection into an epidemiological framework. Ultimately, however, a more complete framework is needed to bring together the optimal strategy at the individual level and the population-level consequences of those responses, before we can truly understand the evolution of host immune responses under parasite co-infection.

Corresponding author
*Corresponding author: Dr A. Fenton, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK. Tel: 0151 795 4473, Fax: 0151 795 4408, Email:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. K. Abbas , K. M. Murphy and A. Sher (1996). Functional diversity of helper T lymphocytes. Nature 383, 787793.

R. M. Anderson (1980). Depression of host population abundance by direct life-cycle macroparasites. Journal of Theoretical Biology 82, 283311.

R. M. Anderson and R. M. May (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219247.

R. M. Anderson and R. M. May (1981). The population dynamics of microparasites and their invertebrate hosts. Philosophical Transactions of the Royal Society of London, Series B 291, 451524.

C. Bleay , C. P. Wilkes , S. Paterson and M. E. Viney (2007). Density-dependent immune responses against the gastrointestinal nematode Strongyloides ratti. International Journal for Parasitology 37, 15011509.

M. Booth , B. J. Vennervald , L. Kenty , A. E. Butterworth , H. C. Kariuki , H. Kadzo , E. Ireri , C. Amanga , G. Kimani , J. K. Mwatha , A. Otedo , J. H. Ouma , E. Muchiri and D. W. Dunne (2004). Micro-geographical variation in exposure to Schistosoma mansoni and malaria, and exacerbation of splenomegaly in Kenyan school-aged children. BMC Infection and Disease 4, 13.

M. Boots and R. G. Bowers (1999). Mechanisms of host resistance to microparasites – avoidance, recovery and tolerance – show different evolutionary dynamics. Journal of Theoretical Biology 201, 1323.

M. Boots and R. G. Bowers (2004). The evolution of resistance through costly acquired immunity. Proceedings of the Royal Society of London, Series B 271, 715723.

R. G. Bowers (1999). A baseline model for the apparent competition between many host strains: the evolution of host resistance to microparasites. Journal of Theoretical Biology 200, 6575.

A. Fenton (2008). Worms and germs: the population dynamic consequences of microparasite-macroparasite co-infection. Parasitology 135 (in press).

M. A. Fishman and A. S. Perelson (1999). Th1/Th2 differentiation and cross-regulation. Bulletin of Mathematical Biology 61, 403436.

A. L. Graham (2001). Use of an optimality model to solve the immunological puzzle of concomitant infection. Parasitology 122 (Suppl), S61S64.

A. L. Graham , I. M. Cattadori , J. O. Lloyd-Smith , M. J. Ferrari and O. N. Bjornstad (2007). Transmission consequences of co-infection: cytokines writ large? Trends in Parasitology 23, 284291.

A. L. Graham , T. J. Lamb , A. F. Read and J. E. Allen (2005). Malaria-filaria coinfection in mice makes malarial disease more severe unless filarial infection achieves patency. Journal of Infectious Disease 191, 410421.

P. J. Hotez , D. H. Molyneux , A. Fenwick , E. Ottesen , S. Ehrlich Sachs and J. D. Sachs (2006). Incorporating a Rapid-Impact Package for Neglected Tropical Diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS Medicine 3, e102.

K. G. Koski and M. E. Scott (2001). Gastrointestinal nematodes, nutrition and immunity: breaking the negative spiral. Annual Review of Nutrition 21, 297321.

T. J. Lamb , A. L. Graham , L. Le Geoff and J. E. Allen (2005). Co-infected C57BL/6 mice mount appropriately polarized and compartmentalized cytokine responses to Litomosoides sigmodontis and Leishmania major but disease progression is altered. Parasite Immunology 27, 317324.

R. M. Maizels , A. Balic , N. Gomez-Escobar , M. Nair , M. D. Taylor and J. E. Allen (2004). Helminth parasites--masters of regulation. Immunological Reviews 201, 89116.

R. M. May and R. M. Anderson (1978). Regulation and stability of host-parasite population interactions. II. Destabilizing processes. Journal of Animal Ecology 47, 249267.

R. M. May and R. M. Anderson (1979). Population biology of infectious diseases: Part II. Nature 280, 455461.

H. McCallum and A. Dobson (1995) Detecting disease and parasite threats to endangered species and ecosystems. Trends in Ecology and Evolution 10, 190194.

M. R. Miller , A. White and M. Boots (2007). Host life span and the evolution of resistance characteristics. Evolution 61, 214.

K. H. Mills (2004). Regulatory T cells: friend or foe in immunity to infection? Nature Reviews in Immunology 4, 841855.

K. R. Page , A. L. Scott and Y. C. Manabe (2006). The expanding realm of heterologous immunity: friend or foe? Cellular Microbiology 8, 185196.

A. B. Pedersen and A. Fenton (2007). Emphasizing the ecology in parasite community ecology. Trends in Ecology and Evolution 22, 133139.

T. N. Petney and R. H. Andrews (1998). Multiparasite communities in animals and humans: Frequency, structure and pathogenic significance. International Journal for Parasitology 28, 377393.

N. Shparago , P. Zelazowski , L. Jin , T. M. McIntyre , E. Stuber , L. M. Pechana , M. R. Kehry , J. J. Mond , E. E. Max and C. M. Snapper (1996). IL-10 selectively regulates murine Ig isotype switching. International Immunology 8, 781790.

E. Shudo and Y. Iwasa (2001). Inducible defense against pathogens and parasites: optimal choice among multiple options. Journal of Theoretical Biology 209, 233247.

C. M. Snapper , F. D. Finkleman and W. E. Paul (1988 a). Regulation of IgG1 and IgE production by interleukin 4. Immunology Reviews 102, 5175.

A. Yates , C. Bergmann , J. L. Van Hemmen , J. Stark and R. Callard (2000). Cytokine-modulated regulation of helper T cell populations. Journal of Theoretical Biology 206, 539560.

A. Yates , R. Callard and J. Stark (2004). Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making. Journal of Theoretical Biology 231, 181196.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 93 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th June 2017. This data will be updated every 24 hours.