Skip to main content Accessibility help

Origin of a major infectious disease in vertebrates: The timing of Cryptosporidium evolution and its hosts

  • JUAN C. GARCIA-R (a1) and DAVID T. S. HAYMAN (a1)


Protozoan parasites of the genus Cryptosporidium infect all vertebrate groups and display some host specificity in their infections. It is therefore possible to assume that Cryptosporidium parasites evolved intimately aside with vertebrate lineages. Here we propose a scenario of Cryptosporidium–Vertebrata coevolution testing the hypothesis that the origin of Cryptosporidium parasites follows that of the origin of modern vertebrates. We use calibrated molecular clocks and cophylogeny analyses to provide and compare age estimates and patterns of association between these clades. Our study provides strong support for the evolution of parasitism of Cryptosporidium with the rise of the vertebrates about 600 million years ago (Mya). Interestingly, periods of increased diversification in Cryptosporidium coincides with diversification of crown mammalian and avian orders after the Cretaceous-Palaeogene (K-Pg) boundary, suggesting that adaptive radiation to new mammalian and avian hosts triggered the diversification of this parasite lineage. Despite evidence for ongoing host shifts we also found significant correlation between protozoan parasites and vertebrate hosts trees in the cophylogenetic analysis. These results help us to understand the underlying macroevolutionary mechanisms driving evolution in Cryptosporidium and may have important implications for the ecology, dynamics and epidemiology of cryptosporidiosis disease in humans and other animals.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Origin of a major infectious disease in vertebrates: The timing of Cryptosporidium evolution and its hosts
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Origin of a major infectious disease in vertebrates: The timing of Cryptosporidium evolution and its hosts
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Origin of a major infectious disease in vertebrates: The timing of Cryptosporidium evolution and its hosts
      Available formats


Corresponding author

*Corresponding author: Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Private Bag, 11 222, Palmerston North 4442, New Zealand. E-mail:


Hide All
Adl, S. M., Leander, B. S., Simpson, A. G. B., Archibald, J. M., Anderson, O. R., Bass, D., Bowser, S. S., Brugerolle, G., Farmer, M. A., Karpov, S., Kolisko, M., Lane, C. E., Lodge, D. J., Mann, D. G., Meisterfeld, R., Mendoza, L., Moestrup, Ø., Mozley-Standridge, S. E., Smirnov, A. V. and Spiegel, F. (2007). Diversity, nomenclature, and taxonomy of Protists. Systematic Biology 56, 684689.
Alvarez-Pellitero, P., Quiroga, M. I., Sitja-Bobadilla, A., Redondo, M. J., Palenzuela, O., Vazquez, P. and Nieto, J. M. (2004). Cryptosporidium scophthalmi n. sp. (Apicomplexa: Cryptosporidiidae) from cultured turbot Scophthalmus maximus. Light and electron microscope description and histopathological study. Diseases of Aquatic Organisms 62, 133145.
Anderson, R. M. and May, R. M. (1982). Coevolution of hosts and parasites. Parasitology 85, 411426.
Barta, J. R. and Thompson, R. C. A. (2006). What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends in Parasitology 22, 463468.
Bellec, L., Clerissi, C., Edern, R., Foulon, E., Simon, N., Grimsley, N. and Desdevises, Y. (2014). Cophylogenetic interactions between marine viruses and eukaryotic picophytoplankton. BMC Evolutionary Biology 14, 113.
Bergsten, J. (2005). A review of long-branch attraction. Cladistics 21, 163193.
Blair, J. E. and Hedges, S. B. (2005). Molecular phylogeny and divergence times of Deuterostome animals. Molecular Biology and Evolution 22, 22752284.
Cacciò, S. M. and Widmer, G. (2013). Cryptosporidium: Parasite and Disease. Springer Science & Business Media, Vienna.
Cailliez, F. (1983). The analytical solution of the additive constant problem. Psychometrika 48, 305308.
Carreno, R. A., Matrin, D. S. and Barta, J. R. (1999). Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences. Parasitology Research 85, 899904.
Claramunt, S. and Cracraft, J. (2015). A new time tree reveals Earth history's imprint on the evolution of modern birds. Science Advances 1, e1501005.
Close, R. A., Friedman, M., Lloyd, G. T. and Benson, R. B. J. (2015). Evidence for a Mid-Jurassic adaptive radiation in mammals. Current Biology 25, 21372142.
Cooper, A. and Penny, D. (1997). Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science 275, 11091113.
De Baets, K. and Littlewood, D. T. J. (2015). The importance of fossils in understanding the evolution of parasites and their vectors. In Advances in Parasitology (ed. Kenneth De, B. & Littlewood, D. T. J.), pp. 151. Academic Press, London, UK.
De Vienne, D. M., Refrégier, G., López-Villavicencio, M., Tellier, A., Hood, M. E. and Giraud, T. (2013). Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytologist 198, 347385.
Dos Reis, M., Inoue, J., Hasegawa, M., Asher, R. J., Donoghue, P. C. J. and Yang, Z. (2012). Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proceedings of the Royal Society of London B: Biological Sciences 279, 34913500.
Drummond, A. J. and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 18.
Drummond, A. J., Ho, S. Y. W., Phillips, M. J. and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. Plos Biology 4, e88.
Drummond, A. J., Suchard, M. A., Xie, D. and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1·7. Molecular Biology and Evolution 29, 19691973.
Eme, L., Sharpe, S. C., Brown, M. W. and Roger, A. J. (2014). On the age of Eukaryotes: evaluating evidence from fossils and molecular clocks. In The Origin and Evolution of Eukaryotes (ed. Keeling, P. J. & Koonin, E. V.), pp. 165180. Cold Spring Harbor Laboratory Press, New York.
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D. and Peterson, K. J. (2011). The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 10911097.
Fayer, R. (2010). Taxonomy and species delimitation in Cryptosporidium . Experimental Parasitology 124, 9097.
Gilabert, A. and Wasmuth, J. D. (2013). Unravelling parasitic nematode natural history using population genetics. Trends in Parasitology 29, 438448.
Ginger, M. L. (2006). Niche metabolism in parasitic protozoa. Philosophical Transactions of the Royal Society B: Biological Sciences 361, 101118.
Hafner, M. S., Sudman, P. D., Villablanca, F. X., Spradling, T. A., Demastes, J. W. and Nadler, S. A. (1994). Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 10871090.
Hedges, S. B. and Kumar, S. (2009). The Timetree of Life. Oxford University Press, New York.
Hedges, S. B., Marin, J., Suleski, M., Paymer, M. and Kumar, S. (2015). Tree of life reveals clock-like speciation and diversification. Molecular Biology and Evolution 32, 835845.
Ho, S. Y. W. and Phillips, M. J. (2009). Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58, 367380.
Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., Ho, S. Y. W., Faircloth, B. C., Nabholz, B., Howard, J. T., Suh, A., Weber, C. C., Da Fonseca, R. R., Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., Ganapathy, G., Boussau, B., Bayzid, M. S., Zavidovych, V., Subramanian, S., Gabaldón, T., Capella-Gutiérrez, S., Huerta-Cepas, J., Rekepalli, B., Munch, K., Schierup, M. et al. (2014). Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 13201331.
Javaux, E. J., Knoll, A. H. and Walter, M. R. (2001). Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 6669.
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. and Mooers, A. O. (2012). The global diversity of birds in space and time. Nature 491, 444448.
Keeling, P. J., Burger, G., Durnford, D. G., Lang, B. F., Lee, R. W., Pearlman, R. E., Roger, A. J. and Gray, M. W. (2005). The tree of eukaryotes. Trends in Ecology & Evolution 20, 670676.
Koehler, A. V., Whipp, M. J., Haydon, S. R. and Gasser, R. B. (2014). Cryptosporidium cuniculus - new records in human and kangaroo in Australia. Parasites & Vectors 7, 492.
Kumar, S. and Hedges, S. B. (1998). A molecular timescale for vertebrate evolution. Nature 392, 917920.
Kuo, C.-H., Wares, J. P. and Kissinger, J. C. (2008). The apicomplexan whole-genome phylogeny: an analysis of incongruence among gene trees. Molecular Biology and Evolution 25, 26892698.
Langergraber, K. E., Prüfer, K., Rowney, C., Boesch, C., Crockford, C., Fawcett, K., Inoue, E., Inoue-Muruyama, M., Mitani, J. C., Muller, M. N., Robbins, M. M., Schubert, G., Stoinski, T. S., Viola, B., Watts, D., Wittig, R. M., Wrangham, R. W., Zuberbühler, K., Pääbo, S. and Vigilant, L. (2012). Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proceedings of the National Academy of Sciences 109, 1571615721.
Legendre, P., Desdevises, Y. and Bazin, E. (2002). A statistical test for host–parasite coevolution. Systematic Biology 51, 217234.
Li, X., Pereira, M. D. G. C., Larsen, R., Xiao, C., Phillips, R., Striby, K., Mccowan, B. and Atwill, E. R. (2015). Cryptosporidium rubeyi n. sp. (Apicomplexa: Cryptosporidiidae) in multiple Spermophilus ground squirrel species. International Journal for Parasitology: Parasites and Wildlife 4, 343350.
Liu, K., Warnow, T. J., Holder, M. T., Nelesen, S. M., Yu, J., Stamatakis, A. P. and Linder, C. R. (2012). SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Systematic Biology 61, 90106.
May, R. M. and Anderson, R. M. (1983). Epidemiology and genetics in the coevolution of parasites and hosts. Proceedings of the Royal Society of London. Series B, Biological Sciences 219, 281313.
Miller, M. A., Pfeiffer, W. and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. pp. 18. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA.
O'leary, M. A., Bloch, J. I., Flynn, J. J., Gaudin, T. J., Giallombardo, A., Giannini, N. P., Goldberg, S. L., Kraatz, B. P., Luo, Z.-X., Meng, J., Ni, X., Novacek, M. J., Perini, F. A., Randall, Z. S., Rougier, G. W., Sargis, E. J., Silcox, M. T., Simmons, N. B., Spaulding, M., Velazco, P. M., Weksler, M., Wible, J. R. and Cirranello, A. L. (2013). The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339, 662667.
Pagenkopp, K. M., Fleischer, R. C., Carney, K. J., Holzer, K. K. and Ruiz, G. M. (2016). Amplicon-based pyrosequencing reveals high diversity of protistan parasites in ships’ ballast water: implications for biogeography and infectious diseases. Microbial Ecology 71, 530–442.
Paradis, E., Claude, J. and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289290.
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. and Katz, L. A. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences 108, 1362413629.
Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.
Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Lemmon, E. M. and Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569573.
R Development Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Ricklefs, R. E., Outlaw, D. C., Svensson-Coelho, M., Medeiros, M. C. I., Ellis, V. A. and Latta, S. (2014). Species formation by host shifting in avian malaria parasites. Proceedings of the National Academy of Sciences 111, 1481614821.
Ronquist, F. and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. and Huelsenbeck, J. P. (2012). MrBayes 3·2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.
Rooney, A. P. (2004). Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans. Molecular Biology and Evolution 21, 17041711.
Ryan, U., Paparini, A., Tong, K., Yang, R., Gibson-Kueh, S., O'hara, A., Lymbery, A. and Xiao, L. (2015). Cryptosporidium huwi n. sp. (Apicomplexa: Eimeriidae) from the guppy (Poecilia reticulata). Experimental Parasitology 150, 3135.
Sierra, R., Cañas-Duarte, S. J., Burki, F., Schwelm, A., Fogelqvist, J., Dixelius, C., González-García, L. N., Gile, G. H., Slamovits, C. H., Klopp, C., Restrepo, S., Arzul, I. and Pawlowski, J. (2016). Evolutionary origins of Rhizarian parasites. Molecular Biology and Evolution 33, 980983.
Slack, K. E., Delsuc, F., Mclenachan, P. A., Arnason, U. and Penny, D. (2007). Resolving the root of the avian mitogenomic tree by breaking up long branches. Molecular Phylogenetics and Evolution 42, 113.
Šlapeta, J. (2013). Cryptosporidiosis and Cryptosporidium species in animals and humans: a thirty colour rainbow? International Journal for Parasitology 43, 957970.
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 13121313.
Stamatakis, A., Hoover, P. and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758771.
Templeton, T. J., Iyer, L. M., Anantharaman, V., Enomoto, S., Abrahante, J. E., Subramanian, G. M., Hoffman, S. L., Abrahamsen, M. S. and Aravind, L. (2004). Comparative analysis of Apicomplexa and genomic diversity in Eukaryotes. Genome Research 14, 16861695.
Thorne, J. L., Kishino, H. and Painter, I. S. (1998). Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution 15, 16471657.
Wasmuth, J., Daub, J., Peregrín-Alvarez, J. M., Finney, C. a. M. and Parkinson, J. (2009). The origins of apicomplexan sequence innovation. Genome Research 19, 12021213.
Wiens, J. J. (2015). Explaining large-scale patterns of vertebrate diversity. Biology Letters 11, 14.
Wilms, R., Sass, H., Köpke, B., Köster, J., Cypionka, H. and Engelen, B. (2006). Specific bacterial, archaeal, and Eukaryotic communities in tidal-flat sediments along a vertical profile of several meters. Applied and Environmental Microbiology 72, 27562764.
Wood, J. R., Wilmshurst, J. M., Rawlence, N. J., Bonner, K. I., Worthy, T. H., Kinsella, J. M. and Cooper, A. (2013). A megafauna's microfauna: Gastrointestinal parasites of New Zealand's extinct moa (Aves: Dinornithiformes). PLoS ONE 8, e57315.
Xiao, L., Escalante, L., Yang, C., Sulaiman, I., Escalante, A. A., Montali, R. J., Fayer, R. and Lal, A. A. (1999). Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locus. Applied and Environmental Microbiology 65, 15781583.
Xiao, L., Sulaiman, I. M., Ryan, U. M., Zhou, L., Atwill, E. R., Tischler, M. L., Zhang, X., Fayer, R. and Lal, A. A. (2002). Host adaptation and host–parasite co-evolution in Cryptosporidium: implications for taxonomy and public health. International Journal for Parasitology 32, 17731785.
Xiao, L., Fayer, R., Ryan, U. and Upton, S. J. (2004). Cryptosporidium taxonomy: recent advances and implications for public health. Clinical Microbiology Reviews 17, 7297.
Zhang, Y., Zhang, S., Li, Y., Ma, S., Wang, C., Xiang, M., Liu, X., An, Z., Xu, J. and Liu, X. (2014). Phylogeography and evolution of a fungal–insect association on the Tibetan Plateau. Molecular Ecology 23, 53375355.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Garcia-R supplementary material
Figures S1-S5

 Word (1.6 MB)
1.6 MB

Origin of a major infectious disease in vertebrates: The timing of Cryptosporidium evolution and its hosts

  • JUAN C. GARCIA-R (a1) and DAVID T. S. HAYMAN (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.