Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T09:58:23.348Z Has data issue: false hasContentIssue false

The past, present and future of fluorescent protein tags in anaerobic protozoan parasites

Published online by Cambridge University Press:  14 December 2015

VICTORIA MORIN-ADELINE*
Affiliation:
Faculty of Veterinary Science, University of Sydney, New South Wales, Australia
JAN ŠLAPETA*
Affiliation:
Faculty of Veterinary Science, University of Sydney, New South Wales, Australia
*
*Corresponding authors. Faculty of Veterinary Science, University of Sydney, New South Wales, Australia. E-mails: vmor0718@uni.sydney.edu.au; jan.slapeta@sydney.edu.au
*Corresponding authors. Faculty of Veterinary Science, University of Sydney, New South Wales, Australia. E-mails: vmor0718@uni.sydney.edu.au; jan.slapeta@sydney.edu.au

Summary

The world health organization currently recognizes diarrhoeal diseases as a significant cause of death in children globally. Protozoan parasites such as Giardia and Entamoeba that thrive in the oxygen-deprived environment of the human gut are common etiological agents of diarrhoea. In the urogenital tract of humans, the anaerobic protozoan parasite Trichomonas vaginalis is notorious as the most common non-viral, sexually transmitted pathogen. Even with high medical impact, our understanding of anaerobic parasite physiology is scarce and as a result, treatment choices are limited. Fluorescent proteins (FPs) are invaluable tools as genetically encoded protein tags for advancing knowledge of cellular function. These FP tags emit fluorescent colours and once attached to a protein of interest, allow tracking of parasite proteins in the dynamic cellular space. Application of green FPs-like FPs in anaerobic protozoans is hindered by their oxygen dependency. In this review, we examine aspects of anaerobic parasite biology that clash with physio-chemical properties of FPs and limit their use as live-parasite protein tags. We expose novel FPs, such as miniSOG that do not require oxygen for signal production. The potential use of novel FPs has the opportunity to leverage the anaerobe parasitologist toolkit to that of aerobe parasitologist.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, R. D. (2000). The Giardia lamblia genome. International Journal for Parasitology 30, 475484.Google Scholar
Apel, K. and Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55, 373399.Google Scholar
Asakawa, H., Hiraoka, Y. and Haraguchi, T. (2014). A method of correlative light and electron microscopy for yeast cells. Micron 61, 5361.CrossRefGoogle ScholarPubMed
Aurrecoechea, C., Brestelli, J., Brunk, B. P., Carlton, J. M., Dommer, J., Fischer, S., Gajria, B., Gao, X., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Innamorato, F., Iodice, J., Kissinger, J. C., Kraemer, E., Li, W., Miller, J. A., Morrison, H. G., Nayak, V., Pennington, C., Pinney, D. F., Roos, D. S., Ross, C., Stoeckert, C. J. Jr., Sullivan, S., Treatman, C. and Wang, H. (2009). GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis . Nucleic Acids Research 37, D526D530.Google Scholar
Baier, J., Maisch, T., Maier, M., Engel, E., Landthaler, M. and Baeumler, W. (2006). Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophysical Journal 91, 14521459.CrossRefGoogle ScholarPubMed
Baird, G. S., Zacharias, D. A. and Tsien, R. Y. (2000). Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences of the United States of America 97, 1198411989.Google Scholar
Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A. and Getzoff, E. D. (2003). Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Proceedings of the National Academy of Sciences of the United States of America 100, 1211112116.Google Scholar
Bercu, T. E., Petri, W. A. and Behm, J. W. (2007). Amebic colitis: new insights into pathogenesis and treatment. Current Gastroenterology Reports 9, 429433.Google Scholar
Betancourt, W. Q., Duarte, D. C., Vasquez, R. C. and Gurian, P. L. (2014). Cryptosporidium and Giardia in tropical recreational marine waters contaminated with domestic sewage: estimation of bathing-associated disease risks. Marine Pollution Bulletin 85, 268273.CrossRefGoogle ScholarPubMed
Bingle, L. E. H., Eastlake, J. L., Bailey, M. and Gibson, W. C. (2001). A novel GFP approach for the analysis of genetic exchange in trypanosomes allowing the in situ detection of mating events. Microbiology-Sgm 147, 32313240.Google Scholar
Buret, A. G. (2008). Pathophysiology of enteric infections with Giardia duodenalis . Parasite-Journal De La Societe Francaise De Parasitologie 15, 261265.Google Scholar
Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A. and Tsien, R. Y. (2002). A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America 99, 78777882.Google Scholar
Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C. M., Besteiro, S., Sicheritz-Ponten, T., Noel, C. J., Dacks, J. B., Foster, P. G., Simillion, C., Van de Peer, Y., Miranda-Saavedra, D., Barton, G. J., Westrop, G. D., Mueller, S., Dessi, D., Fiori, P. L., Ren, Q., Paulsen, I., Zhang, H., Bastida-Corcuera, F. D., Simoes-Barbosa, A., Brown, M. T., Hayes, R. D., Mukherjee, M., Okumura, C. Y., Schneider, R., Smith, A. J., Vanacova, S., Villalvazo, M., et al. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis . Science 315, 207212.CrossRefGoogle ScholarPubMed
Cedeno, J. R. and Krogstad, D. J. (1983). Susceptibility testing of Entamoeba histolytica . Journal of Infectious Diseases 148, 10901095.Google Scholar
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. and Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science 263, 802805.Google Scholar
Chapagain, P. P., Regmi, C. K. and Castillo, W. (2011). Fluorescent protein barrel fluctuations and oxygen diffusion pathways in mCherry. Journal of Chemical Physics 135. doi: 10.1063/1.3660197.Google Scholar
Chapman, S., Faulkner, C., Kaiserli, E., Garcia-Mata, C., Savenkov, E. I., Roberts, A. G., Oparka, K. J. and Christie, J. M. (2008). The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proceedings of the National Academy of Sciences of the United States of America 105, 2003820043.CrossRefGoogle ScholarPubMed
Checkley, W., White, A. C. Jr., Jaganath, D., Arrowood, M. J., Chalmers, R. M., Chen, X.-M., Fayer, R., Griffiths, J. K., Guerrant, R. L., Hedstrom, L., Huston, C. D., Kotloff, K. L., Kang, G., Mead, J. R., Miller, M., Petri, W. A. Jr., Priest, J. W., Roos, D. S., Striepen, B., Thompson, R. C. A., Ward, H. D., Van Voorhis, W. A., Xiao, L., Zhu, G. and Houpt, E. R. (2015). A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium . Lancet Infectious Diseases 15, 8594.Google Scholar
Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G.-W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S. and Huang, B. (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 14791491.Google Scholar
Climent, T., Gonzalez-Luque, R., Merchan, M. and Serrano-Andres, L. (2006). Theoretical insight into the spectroscopy and photochemistry of isoalloxazine, the flavin core ring. Journal of Physical Chemistry A 110, 1358413590.CrossRefGoogle ScholarPubMed
Cormack, B. P., Valdivia, R. H. and Falkow, S. (1996). FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 3338.Google Scholar
Costantini, L. M. and Snapp, E. L. (2013). Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA and Cell Biology 32, 622627.Google Scholar
Crameri, A., Whitehorn, E. A., Tate, E. and Stemmer, W. P. C. (1996). Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnology 14, 315319.Google Scholar
Dawson, S. C., Sagolla, M. S., Mancuso, J. J., Woessner, D. J., House, S. A., Fritz-Laylin, L. and Cande, W. Z. (2007). Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis . Eukaryotic Cell 6, 23542364.Google Scholar
Delgadillo, M. G., Liston, D. R., Niazi, K. and Johnson, P. J. (1997). Transient and selectable transformation of the parasitic protist Trichomonas vaginalis . Proceedings of the National Academy of Sciences of the United States of America 94, 47164720.Google Scholar
Dhandayuthapani, S., Via, L. E., Thomas, C. A., Horowitz, P. M., Deretic, D. and Deretic, V. (1995). Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Molecular Microbiology 17, 901912.Google Scholar
Drepper, T., Eggert, T., Circolone, F., Heck, A., Krauss, U., Guterl, J.-K., Wendorff, M., Losi, A., Gaertner, W. and Jaeger, K.-E. (2007). Reporter proteins for in vivo fluorescence without oxygen. Nature Biotechnology 25, 443445.Google Scholar
Dunn, L. A., Burgess, A. G., Krauer, K. G., Eckmann, L., Vanelle, P., Crozet, M. D., Gillin, F. D., Upcroft, P. and Upcroft, J. A. (2010). A new-generation 5-nitroimidazole can induce highly metronidazole-resistant Giardia lamblia in vitro . International Journal of Antimicrobial Agents 36, 3742.Google Scholar
Ellis, J. E., Yarlett, N., Cole, D., Humphreys, M. J. and Lloyd, D. (1994). Antioxidant defenses in the microaerophilic protozoan Trichomonas vaginalis - comparision of metronidazole-resistant and sensitive strains. Microbiology-Uk 140, 24892494.Google Scholar
Elsliger, M. A., Wachter, R. M., Hanson, G. T., Kallio, K. and Remington, S. J. (1999). Structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 38, 52965301.Google Scholar
Fernandes, P. D. and Assreuy, J. (1997). Role of nitric oxide and superoxide in Giardia lamblia killing. Brazilian Journal of Medical and Biological Research 30, 9399.Google Scholar
Fernandez-Suarez, M. and Ting, A. Y. (2008). Fluorescent probes for super-resolution imaging in living cells. Nature Reviews Molecular Cell Biology 9, 929943.CrossRefGoogle ScholarPubMed
Fletcher, S., Caprarelli, G., Merif, J., Andresen, D., Van Hal, S., Stark, D. and Ellis, J. (2014). Epidemiology and geographic distribution of enteric protozoan infections in Sydney, Australia. Journal of Public Health Research 3, 8391.Google Scholar
Gibson, W., Peacock, L., Ferris, V., Williams, K. and Bailey, M. (2006). Analysis of a cross between green and red fluorescent trypanosomes. Biochemical Society Transactions 34, 557559.CrossRefGoogle ScholarPubMed
Gibson, W., Peacock, L., Ferris, V., Williams, K. and Bailey, M. (2008). The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei . Parasites & Vectors 1, 4.Google Scholar
Gilchrist, C. A., Houpt, E., Trapaidze, N., Fei, Z., Crasta, O., Asgharpour, A., Evans, C., Martino-Catt, S., Baba, D. J., Stroup, S., Hamano, S., Ehrenkaufer, G., Okada, M., Singh, U., Nozaki, T., Mann, B. J. and Petri, W. A. Jr. (2006). Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. Molecular and Biochemical Parasitology 147, 163176.CrossRefGoogle ScholarPubMed
Goodman, C. D. and McFadden, G. I. (2013). Targeting apicoplasts in malaria parasites. Expert Opinion on Therapeutic Targets 17, 167177.Google Scholar
Gookin, J. L., Copple, C. N., Papich, M. G., Poore, M. F., Stauffer, S. H., Birkenheuer, A. J., Twedt, D. C. and Levy, M. G. (2006). Efficacy of ronidazole for treatment of feline Tritrichomonas foetus infection. Journal of Veterinary Internal Medicine 20, 536543.Google Scholar
Gould, S. B., Woehle, C., Kusdian, G., Landan, G., Tachezy, J., Zimorski, V. and Martin, W. F. (2013). Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. International Journal for Parasitology 43, 707719.Google Scholar
Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. and Tsien, R. Y. (2001). Reducing the environmental sensitivity of yellow fluorescent protein - mechanism and applications. Journal of Biological Chemistry 276, 2918829194.Google Scholar
Gross, L. A., Baird, G. S., Hoffman, R. C., Baldridge, K. K. and Tsien, R. Y. (2000). The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences of the United States of America 97, 1199011995.Google Scholar
Hansen, M. C., Palmer, R. J., Udsen, C., White, D. C. and Molin, S. (2001). Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology-Sgm 147, 13831391.Google Scholar
Harper, B. K., Mabon, S. A., Leffel, S. M., Halfhill, M. D., Richards, H. A., Moyer, K. A. and Stewart, C. N. (1999). Green fluorescent protein as a marker for expression of a second gene in transgenic plants. Nature Biotechnology 17, 11251129.Google Scholar
He, C. Y., Shaw, M. K., Pletcher, C. H., Striepen, B., Tilney, L. G. and Roos, D. S. (2001). A plastid segregation defect in the protozoan parasite Toxoplasma gondii . Embo Journal 20, 330339.Google Scholar
Hehl, A. B., Marti, M. and Kohler, P. (2000). Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia . Molecular Biology of the Cell 11, 17891800.Google Scholar
Heim, R., Prasher, D. and Tsien, R. (1994). Wavelength mutations and posttranslational autooxidation of green fluorescent protein. PNAS 91, 1250112504.CrossRefGoogle Scholar
Heim, R., Cubitt, A. B. and Tsien, R. Y. (1995). Improved green fluorescence. Nature 373, 663664.Google Scholar
Heim, R. and Tsien, R. Y. (1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Current Biology 6, 178182.Google Scholar
Herrou, J. and Crosson, S. (2011). Function, structure and mechanism of bacterial photosensory LOV proteins. Nature Reviews Microbiology 9, 713723.Google Scholar
House, S. A., Richter, D. J., Pham, J. K. and Dawson, S. C. (2011). Giardia flagellar motility is not directly required to maintain attachment to surfaces. Plos Pathogens 7(8):e1002167.Google Scholar
Husain, A., Sato, D., Jeelani, G., Soga, T. and Nozaki, T. (2012). Dramatic increase in glycerol biosynthesis upon oxidative stress in the anaerobic protozoan parasite Entamoeba histolytica . Plos Neglected Tropical Diseases 6(9): e1831.Google Scholar
Jerlstrom-Hultqvist, J., Stadelmann, B., Birkestedt, S., Hellman, U. and Svard, S. G. (2012). Plasmid vectors for proteomic analyses in Giardia: purification of virulence factors and analysis of the proteasome. Eukaryotic Cell 11, 864873.Google Scholar
Kasahara, M., Swartz, T. E., Olney, M. A., Onodera, A., Mochizuki, N., Fukuzawa, H., Asamizu, E., Tabata, S., Kanegae, H., Takano, M., Christie, J. M., Nagatani, A. and Briggs, W. R. (2002). Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiology 129, 762773.Google Scholar
Keppler, A., Gendreizig, S., Gronemeyer, T., Pick, H., Vogel, H. and Johnsson, K. (2003). A general method for the covalent labeling of fusion proteins with small molecules in vivo . Nature Biotechnology 21, 8689.Google Scholar
Kimata, Y., Iwaki, M., Lim, C. R. and Kohno, K. (1997). A novel mutation which enhances the fluorescence of green fluorescent protein at high temperatures. Biochemical and Biophysical Research Communications 232, 6973.Google Scholar
King, J., HaasePettingell, C., Robinson, A. S., Speed, M. and Mitraki, A. (1996). Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB Journal 10, 5766.Google Scholar
Kneen, M., Farinas, J., Li, Y. X. and Verkman, A. S. (1998). Green fluorescent protein as a noninvasive intracellular pH indicator. Biophysical Journal 74, 15911599.Google Scholar
Kotloff, K. L., Nataro, J. P., Blackwelder, W. C., Nasrin, D., Farag, T. H., Panchalingam, S., Wu, Y., Sow, S. O., Sur, D., Breiman, R. F., Faruque, A. S. G., Zaidi, A. K. M., Saha, D., Alonso, P. L., Tamboura, B., Sanogo, D., Onwuchekwa, U., Manna, B., Ramamurthy, T., Kanungo, S., Ochieng, J. B., Omore, R., Oundo, J. O., Hossain, A., Das, S. K., Ahmed, S., Qureshi, S., Quadri, F., Adegbola, R. A., Antonio, M., et al. (2013). Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209222.CrossRefGoogle ScholarPubMed
Krauss, U., Losi, A., Gartner, W., Jaeger, K. E. and Eggert, T. (2005). Initial characterization of a blue-light sensing, phototropin-related protein from Pseudomonas putida: a paradigm for an extended LOV construct. Physical Chemistry Chemical Physics 7, 28042811.CrossRefGoogle ScholarPubMed
Kredel, S., Oswald, F., Nienhaus, K., Deuschle, K., Roecker, C., Wolff, M., Heilker, R., Nienhaus, G. U. and Wiedenmann, J. (2009). mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. Plos ONE 4(2): e4391.Google Scholar
Lauf, U., Lopez, P. and Falk, M. M. (2001). Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins. Febs Letters 498, 1115.Google Scholar
Laurent, A. D., Mironov, V. A., Chapagain, P. P., Nemukhin, A. V. and Krylov, A. I. (2012). Exploring structural and optical properties of fluorescent proteins by squeezing: modeling high-pressure effects on the mStrawberry and mCherry red fluorescent proteins. Journal of Physical Chemistry B 116, 1242612440.Google Scholar
Leipe, D. D., Gunderson, J. H., Nerad, T. A. and Sogin, M. L. (1993). Small subunit ribosomal RNA of Hexamita inflata and the quest for the 1st branch in the eukaryotic tree. Molecular and Biochemical Parasitology 59, 4148.Google Scholar
LeVine, D. N., Gookin, J. L., Papich, M. G. and Davidson, G. S. (2014). Twice-daily dosing of RDZ no longer recommended for treatment of intestinal Tritrichomonas foetus infection . Journal of Feline Medicine and Surgery 16, 198198.Google Scholar
Lindmark, D. G. and Muller, M. (1973). Hydrogenosome, a cytoplasmic organelle of anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. Journal of Biological Chemistry 248, 77247728.Google Scholar
Lindmark, D. G. and Muller, M. (1974). Superoxide dismutase in anaerobic flagellates, Tritrichomonas foetus and Monocercomonas sp . Journal of Biological Chemistry 249, 46344637.Google Scholar
Lindmark, D. G., Eckenrode, B. L., Halberg, L. A. and Dinbergs, I. D. (1989). Carbohydrate, energy and hydrogenosomal metabolism of Tritrichomonas foetus and Trichomonas vaginalis . Journal of Protozoology 36, 214216.Google Scholar
Lipman, N. S., Jackson, L. R., Trudel, L. J. and Weis-Garcia, F. (2005). Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. Ilar Journal 46, 258268.Google Scholar
Liu, C., Li, J., Zhang, X., Liu, Q., Liu, H., Gong, P., Zhang, G., Yao, L. and Zhang, X. (2008). Stable expression of green fluorescent protein mediated by GCV in Giardia canis . Parasitology International 57, 320324.Google Scholar
Lloyd, D. and Kristensen, B. (1985). Metronidazole inhibition of hydrogen production in vivo in drug-sensitive and resistant strains of Trichomonas vaginalis . Journal of General Microbiology 131, 849853.Google ScholarPubMed
Lloyd, D., Harris, J. C., Maroulis, S., Biagini, G. A., Wadley, R. B., Turner, M. P. and Edwards, M. R. (2000). The microaerophilic flagellate Giardia intestinalis: oxygen and its reaction products collapse membrane potential and cause cytotoxicity. Microbiology-Uk 146, 31093118.Google Scholar
Lloyd, D., Harris, J. C., Biagini, G. A., Hughes, M. R., Maroulis, S., Bernard, C., Wadley, R. B. and Edwards, M. R. (2004). The plasma membrane of microaerophilic protists: oxidative and nitrosative stress. Microbiology-SGM 150, 11831190.Google Scholar
Lo, H. S. and Reeves, R. E. (1979). Entamoeba histolytica - Flavins in axenic organism. Experimental Parasitology 47, 180184.Google Scholar
Loftus, B., Anderson, I., Davies, R., Alsmark, U. C. M., Samuelson, J., Amedeo, P., Roncaglia, P., Berriman, M., Hirt, R. P., Mann, B. J., Nozaki, T., Suh, B., Pop, M., Duchene, M., Ackers, J., Tannich, E., Leippe, M., Hofer, M., Bruchhaus, I., Willhoeft, U., Bhattacharya, A., Chillingworth, T., Churcher, C., Hance, Z., Harris, B., Harris, D., Jagels, K., Moule, S., Mungall, K., Ormond, D., et al. (2005). The genome of the protist parasite Entamoeba histolytica . Nature 433, 865868.Google Scholar
Mack, S. R. and Muller, M. (1978 a). Effect of oxygen and carbon-dioxide on the growth of Trichomonas vaginalis and Tritrichomonas foetus . Journal of Parasitology 64, 927929.Google Scholar
Mack, S. R. and Muller, M. (1978 b). Effect of oxygen and carbon dioxide on the growth of Trichomonas vaginalis and Tritrichomonas foetus . Journal of Parasitology 64, 927929.Google Scholar
Makrides, S. C. (1996). Strategies for achieving high-level expression of genes in Escherichia coli . Microbiological Reviews 60, 512–&.Google Scholar
Manna, D., Ehrenkaufer, G. M. and Singh, U. (2014). Regulation of gene expression in the protozoan parasite Entamoeba invadens: identification of core promoter elements and promoters with stage-specific expression patterns. International Journal for Parasitology 44, 837845.Google Scholar
Mariante, R. M., Guimaraes, C. A., Linden, R. and Benchimol, M. (2003). Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus . Histochemistry and Cell Biology 120, 129141.Google Scholar
Martincova, E., Voleman, L., Najdrova, V., De Napoli, M., Eshar, S., Gualdron, M., Hopp, C. S., Sanin, D. E., Tembo, D. L., Van Tyne, D., Walker, D., Marcincikova, M., Tachezy, J. and Dolezal, P. (2012). Live imaging of mitosomes and hydrogenosomes by HaloTag technology. Plos ONE 7(4): e36314 Google Scholar
Matz, M. V., Fradkov, A. F., Labas, Y. A., Savitsky, A. P., Zaraisky, A. G., Markelov, M. L. and Lukyanov, S. A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology 17, 969973.Google Scholar
Meltzer, E., Lachish, T. and Schwartz, E. (2014). Treatment of giardiasis after nonresponse to nitroimidazole. Emerging Infectious Diseases 20, 17421744.CrossRefGoogle ScholarPubMed
Merzlyak, E. M., Goedhart, J., Shcherbo, D., Bulina, M. E., Shcheglov, A. S., Fradkov, A. F., Gaintzeva, A., Lukyanov, K. A., Lukyanov, S., Gadella, T. W. J. and Chudakov, D. M. (2007). Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods 4, 555557.Google Scholar
Miesenbock, G., De Angelis, D. A. and Rothman, J. E. (1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192195.Google Scholar
Millet, C. O. M., Williams, C. F., Hayes, A. J., Hann, A. C., Cable, J. and Lloyd, D. (2013). Mitochondria-derived organelles in the diplomonad fish parasite Spironucleus vortens . Experimental Parasitology 135, 262273.Google Scholar
Miyawaki, A. and Tsien, R. Y. (2000). Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Applications of Chimeric Genes and Hybrid Proteins Pt B 327, 472500.Google Scholar
Morin-Adeline, V., Lomas, R., O'Meally, D., Stack, C., Conesa, A. and Slapeta, J. (2014). Comparative transcriptomics reveals striking similarities between the bovine and feline isolates of Tritrichomonas foetus: consequences for in silico drug-target identification. BMC Genomics 15, 955.Google Scholar
Morin-Adeline, V., Fraser, T. S., Stack, C. and Slapeta, J. (2015 a). Host origin determines pH tolerance of Tritrichomonas foetus isolates from the feline gastrointestinal and bovine urogenital tracts. Experimental Parasitology 157, 6877.Google Scholar
Morin-Adeline, V., Mueller, K., Conesa, A. and Slapeta, J. (2015 b). Comparative RNA-seq analysis of the Tritriochomonas foetus PIG30/1 isolate from pigs reveals a close association with the Tritrichomonas foetus BP-4 isolate ‘bovine genotype’. Veterinary Parasitology. 212, 111117.Google Scholar
Muller, M. and Lindmark, D. G. (1978). Respiration of hydrogenosomes of Tritrichomonas foetus 2. Effect of CoA on pyruvate oxidation. Journal of Biological Chemistry 253, 12151218.Google Scholar
Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K. and Miyawaki, A. (2002). A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology 20, 8790.Google Scholar
Nakasako, M., Iwata, T., Matsuoka, D. and Tokutomi, S. (2004). Light-induced structural changes of LOV domain-containing polypeptides from Arabidopsis phototropin 1 and 2 studied by small-angle X-ray scattering. Biochemistry 43, 1488114890.Google Scholar
Niedenthal, R. K., Riles, L., Johnston, M. and Hegemann, J. H. (1996). Green fluorescent protein as a marker for gene expression and subcellular localisation in budding yeast. Yeast 12, 773786.Google Scholar
Niswender, K. D., Blackman, S. M., Rohde, L., Magnuson, M. A. and Piston, D. W. (1995). Quantitative imaging of green-fluorescent protein in cultured cells - comparison of microscopic techniques, use in fusion proteins and detection limits. Journal of Microscopy-Oxford 180, 109116.Google Scholar
Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y. and Remington, S. J. (1996). Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 13921395.Google Scholar
PageSharp, M., Behm, C. A. and Smith, G. D. (1996). Tritrichomonas foetus and Trichomonas vaginalis: the pattern of inactivation of hydrogenase activity by oxygen and activities of catalase and ascorbate peroxidase. Microbiology-Uk 142, 207211.Google Scholar
Paget, T. A. and Lloyd, D. (1990). Trichomonas vaginalis requires traces of oxygen and high concentration of carbon dioxide for optimal growth. Molecular and Biochemical Parasitology 41, 6572.Google Scholar
Paget, T. A., Kelly, M. L., Jarroll, E. L., Lindmark, D. G. and Lloyd, D. (1993). The effects of oxygen on fermentation in Giardia lamblia . Molecular and Biochemical Parasitology 57, 6572.Google Scholar
Paget, T. A., Raynor, M. H., Shipp, D. W. E. and Lloyd, D. (1990). Giardia lamblia produces alanine anaerobically but not in the presence of oxygen. Molecular and Biochemical Parasitology 42, 6367.Google Scholar
Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R. and Piston, D. W. (1997). Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophysical Journal 73, 27822790.Google Scholar
Peacock, L., Ferris, V., Bailey, M. and Gibson, W. (2007). Dynamics of infection and competition between two strains of Trypanosoma brucei brucei in the tsetse fly observed using fluorescent markers. Kinetoplastid Biology and Disease 6, 44.Google Scholar
Peacock, L., Bailey, M., Carrington, M. and Gibson, W. (2014). Meiosis and haploid gametes in the pathogen Trypanosoma brucei . Current Biology 24, 181186.Google Scholar
Pedelacq, J. D., Piltch, E., Liong, E. C., Berendzen, J., Kim, C. Y., Rho, B. S., Park, M. S., Terwilliger, T. C. and Waldo, G. S. (2002). Engineering soluble proteins for structural genomics. Nature Biotechnology 20, 927932.Google Scholar
Petri, W. A. and Singh, U. (1999). Diagnosis and management of amebiasis. Clinical Infectious Diseases 29, 11171125.Google Scholar
Petrin, D., Delgaty, K., Bhatt, R. and Garber, G. (1998). Clinical and microbiological aspects of Trichomonas vaginalis . Clinical Microbiology Reviews 11, 300317.Google Scholar
Pietra, F. (2014). Molecular dynamics simulation of dioxygen pathways through mini singlet oxygen generator (miniSOG), a genetically encoded marker and killer protein. Chemistry & Biodiversity 11, 18831891.Google Scholar
Pimenta, F. M., Jensen, R. L., Breitenbach, T., Etzerodt, M. and Ogilby, P. R. (2013). Oxygen-dependent photochemistry and photophysics of “miniSOG,” a protein-encased flavin. Photochemistry and Photobiology 89, 11161126.Google Scholar
Pletnev, S., Shcherbo, D., Chudakov, D. M., Pletneva, N., Merzlyak, E. M., Wlodawer, A., Dauter, Z. and Pletnev, V. (2008). A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. Journal of Biological Chemistry 283, 2898028987.Google Scholar
Poxleitner, M. K., Carpenter, M. L., Mancuso, J. J., Wang, C.-J. R., Dawson, S. C. and Cande, W. Z. (2008). Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis . Science 319, 15301533.Google Scholar
Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. and Cormier, M. J. (1992). Primary structure of the Aequorea victoria green fluorescent protein. Gene 111, 229233.Google Scholar
Puiu, D., Enomoto, S., Buck, G. A., Abrahamsen, M. S. and Kissinger, J. C. (2004). CryptoDB: the Cryptosporidium genome resource. Nucleic Acids Research 32, D329D331.Google Scholar
Purdy, J. E., Mann, B. J., Pho, L. T. and Petri, W. A. (1994). Transient transfection of the enteric parasite Entamoeba histolytica and expression of firefly luciferase. Proceedings of the National Academy of Sciences of the United States of America 91, 70997103.Google Scholar
Qi, Y. B., Garren, E. J., Shu, X., Tsien, R. Y. and Jin, Y. (2012). Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proceedings of the National Academy of Sciences of the United States of America 109, 74997504.CrossRefGoogle ScholarPubMed
Raj, D., Ghosh, E., Mukherjee, A. K., Nozaki, T. and Ganguly, S. (2014). Differential gene expression in Giardia lamblia under oxidative stress: significance in eukaryotic evolution. Gene 535, 131139.Google Scholar
Raza, A., Iqbal, Z., Muhammad, G., Khan, M. A. and Hanif, K. (2013). Amoebiasis as a major risk to human health: a review. International Journal of Molecular Medical Science 3, 1324.Google Scholar
Regmi, C. K., Bhandari, Y. R., Gerstman, B. S. and Chapagain, P. P. (2013). Exploring the diffusion of molecular oxygen in the red fluorescent protein mCherry using explicit oxygen molecular dynamics simulations. Journal of Physical Chemistry B 117, 22472253.Google Scholar
Regoes, A. and Hehl, A. B. (2005). SNAP-tag (TM) mediated live cell labeling as an alternative to GFP in anaerobic organisms. Biotechniques 39, 809810.Google Scholar
Regoes, A., Zourmpanou, D., Leon-Avila, G., van der Giezen, M., Tovar, J. and Hehl, A. B. (2005). Protein import, replication, and inheritance of a vestigial mitochondrion. Journal of Biological Chemistry 280, 3055730563.Google Scholar
Reid, B. G. and Flynn, G. C. (1997). Chromophore formation in green fluorescent protein. Biochemistry 36, 67866791.Google Scholar
Rendon-Maldonado, J., Espinosa-Cantellano, M., Soler, C., Torres, J. V. and Martinez-Palomo, A. (2003). Trichomonas vaginalis: in vitro attachment and internalization of HIV-1 and HIV-1-infected lymphocytes. Journal of Eukaryotic Microbiology 50, 4348.CrossRefGoogle ScholarPubMed
Ruiz-Gonzalez, R., Cortajarena, A. L., Mejias, S. H., Agut, M., Nonell, S. and Flors, C. (2013). Singlet oxygen generation by the genetically encoded tag miniSOG. Journal of the American Chemical Society 135, 95649567.Google Scholar
Salomon, M., Christie, J. M., Knieb, E., Lempert, U. and Briggs, W. R. (2000). Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39, 94019410.Google Scholar
Sateriale, A., Roy, N. H. and Huston, C. D. (2013). SNAP-Tag technology optimized for use in Entamoeba histolytica . Plos ONE 8(12): e83997.Google Scholar
Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E. and Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nature Biotechnology 22, 15671572.Google Scholar
Shaner, N. C., Lin, M. Z., McKeown, M. R., Steinbach, P. A., Hazelwood, K. L., Davidson, M. W. and Tsien, R. Y. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods 5, 545551.Google Scholar
Shcherbo, D., Merzlyak, E. M., Chepurnykh, T. V., Fradkov, A. F., Ermakova, G. V., Solovieva, E. A., Lukyanov, K. A., Bogdanova, E. A., Zaraisky, A. G., Lukyanov, S. and Chudakov, D. M. (2007). Bright far-red fluorescent protein for whole-body imaging. Nature Methods 4, 741746.Google Scholar
Shu, X., Lev-Ram, V., Deerinck, T. J., Qi, Y., Ramko, E. B., Davidson, M. W., Jin, Y., Ellisman, M. H. and Tsien, R. Y. (2011). A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. Plos Biology 9(4): e1001041.Google Scholar
Siemering, K. R., Golbik, R., Sever, R. and Haseloff, J. (1996). Mutations that suppress the thermosensitivity of green fluorescent protein. Current Biology 6, 16531663.Google Scholar
Singer, S. M., Yee, J. and Nash, T. E. (1998). Episomal and integrated maintenance of foreign DNA in Giardia lamblia . Molecular and Biochemical Parasitology 92, 5969.Google Scholar
Smutna, T., Goncalves, V. L., Saraiva, L. M., Tachezy, J., Teixeira, M. and Hrdy, I. (2009). Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: the terminal oxygen reductase. Eukaryotic Cell 8, 4755.Google Scholar
Smutna, T., Pilarova, K., Tarabek, J., Tachezy, J. and Hrdy, I. (2014). Novel functions of an iron-sulfur flavoprotein from Trichomonas vaginalis hydrogenosomes. Antimicrobial Agents and Chemotherapy 58, 32243232.Google Scholar
Swartz, T. E., Corchnoy, S. B., Christie, J. M., Lewis, J. W., Szundi, I., Briggs, W. R. and Bogomolni, R. A. (2001). The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. Journal of Biological Chemistry 276, 3649336500.Google Scholar
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. and Vale, R. D. (2014). A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635646.Google Scholar
Teixeira, J. E. and Huston, C. D. (2008). Evidence of a continuous endoplasmic reticulum in the protozoan parasite Entamoeba histolytica . Eukaryotic Cell 7, 12221226.Google Scholar
Tovar, J., Fischer, A. and Clark, C. G. (1999). The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica . Molecular Microbiology 32, 10131021.Google Scholar
Van der Pol, B. (2007). Trichomonas vaginalis infection: the most prevalent nonviral sexually transmitted infection receives the least public health attention. Clinical Infectious Diseases 44, 2325.CrossRefGoogle ScholarPubMed
VanWye, J. D. and Haldar, K. (1997). Expression of green fluorescent protein in Plasmodium falciparum . Molecular and Biochemical Parasitology 87, 225229.Google Scholar
Vicente, J. B., Vy, T., Pinto, L., Teixeira, M. and Singh, U. (2012). A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica . Eukaryotic Cell 11, 11121118.Google Scholar
Vinayak, S., Pawlowic, M. C., Sateriale, A., Brooks, C. F., Studstill, C. J., Bar-Peled, Y., Cipriano, M. J. and Striepen, B. (2015). Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum . Nature 523, 477480.Google Scholar
Waldo, G. S., Standish, B. M., Berendzen, J. and Terwilliger, T. C. (1999). Rapid protein-folding assay using green fluorescent protein. Nature Biotechnology 17, 691695.Google Scholar
Waller, R. F., Keeling, P. J., Donald, R. G. K., Striepen, B., Handman, E., Lang-Unnasch, N., Cowman, A. F., Besra, G. S., Roos, D. S. and McFadden, G. I. (1998). Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum . Proceedings of the National Academy of Sciences of the United States of America 95, 1235212357.Google Scholar
Waller, R. F., Reed, M. B., Cowman, A. F. and McFadden, G. I. (2000). Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. Embo Journal 19, 17941802.Google Scholar
Wampfler, P. B., Faso, C. and Hehl, A. B. (2014). The Cre/loxP system in Giardia lamblia: genetic manipulations in a binucleate tetraploid protozoan. International Journal for Parasitology 44, 497506.Google Scholar
Wang, S. X. and Hazelrigg, T. (1994). Implications for BCD messenger RNA localisation from spatial distribution of EXU protein in Drosophila oogenesis. Nature 369, 400403.Google Scholar
Ward, W. W., Prentice, H. J., Roth, A. F., Cody, C. W. and Reeves, S. C. (1982). Spectral perturations of the Aequorea green fluoresent protein. Photochemistry and Photobiology 35, 803808.Google Scholar
Wegayehu, T., Adamu, H. and Petros, B. (2013). Prevalence of Giardia duodenalis and Cryptosporidium species infections among children and cattle in North Shewa Zone, Ethiopia. BMC Infectious Diseases 13, 419.Google Scholar
Weinbach, E. C., Claggett, C. E., Keister, D. B., Diamond, L. S. and Kon, H. (1980). Respiratory metabolism of Giardia lamblia . Journal of Parasitology 66, 347350.Google Scholar
Wexler-Cohen, Y., Stevens, G. C., Barnoy, E., van der Bliek, A. M. and Johnson, P. J. (2014). A dynamin-related protein contributes to Trichomonas vaginalis hydrogenosomal fission. Faseb Journal 28, 11131121.Google Scholar
WHO (2014). Preventing Diarrhoea through Better Water, Sanitation and Hygiene: Exposures and Impacts in Low- and Middle-Income Countries, Geneva, Switzerland.Google Scholar
Wiedenmann, J., Schenk, A., Rocker, C., Girod, A., Spindler, K. D. and Nienhaus, G. U. (2002). A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proceedings of the National Academy of Sciences of the United States of America 99, 1164611651.Google Scholar
Wingen, M., Potzkei, J., Endres, S., Casini, G., Rupprecht, C., Fahlke, C., Krauss, U., Jaeger, K.-E., Drepper, T. and Gensch, T. (2014). The photophysics of LOV-based fluorescent proteins - new tools for cell biology. Photochemical & Photobiological Sciences 13, 875883.Google Scholar
Winterflood, C. M. and Ewers, H. (2014). Single-molecule localisation microscopy using mCherry. Chemphyschem 15, 34473451.Google Scholar
Xu, P., Widmer, G., Wang, Y. P., Ozaki, L. S., Alves, J. M., Serrano, M. G., Puiu, D., Manque, P., Akiyoshi, D., Mackey, A. J., Pearson, W. R., Dear, P. H., Bankier, A. T., Peterson, D. L., Abrahamsen, M. S., Kapur, V., Tzipori, S. and Buck, G. A. (2004). The genome of Cryptosporidium hominis . Nature 431, 11071112.Google Scholar
Yang, F., Moss, L. G. and Phillips, G. N. (1996). The molecular structure of green fluorescent protein. Nature Biotechnology 14, 12461251.Google Scholar
Yarbrough, D., Wachter, R. M., Kallio, K., Matz, M. V. and Remington, S. J. (2001). Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2·0-angstrom resolution. Proceedings of the National Academy of Sciences of the United States of America 98, 462467.Google Scholar
Zhao, T., Cruz, F. and Ferry, J. G. (2001). Iron-sulfur flavoprotein (Isf) from Methanosarcina thermophila is the prototype of a widely distributed family. Journal of Bacteriology 183, 62256233.Google Scholar