Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T04:50:17.742Z Has data issue: false hasContentIssue false

A perspective on clonal phenotypic (antigenic) variation in protozoan parasites

Published online by Cambridge University Press:  29 May 2003

C. M. R. TURNER
Affiliation:
Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ

Abstract

Intra-clonal phenotypic (antigenic) variation is used by many pathogens to evade the consequences of immune-mediated killing by mammalian hosts. In this substantially theoretical article, I emphasise that antigenic variation (sensu stricto) involves no change in genotype; its importance as a mechanism for promoting pathogen transmission and its polyphyletic origin. From a functional perspective, antigenic variation is constrained by the requirement to meet five conditions. These are: capability to express several antigens against which functional immunity predominates; capability to interact with the environment; mutually exclusive expression of variable antigens in each cell within an infection; mutually exclusive expression in the within-host pathogen population and the capability for population growth within a host. Meeting these conditions leads to chronicity of infection and high rates of hierarchical and reversible switching of expression between variable antigens. The organisation of hierarchical expression is discussed in some detail.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AL-KHEDERY, B., BARNWELL, J. W. & GALINSKI, M. R. (1999). Antigenic variation in malaria: a 3′ genomic alteration associated with the expression of P. knowlesi variant antigen. Molecular Cell 3, 131141.CrossRefGoogle Scholar
ALRED, D. R. (1998). Antigenic variation in Babesia bovis: how similar is it to that in Plasmodium falciparum? Annals of Tropical Medicine and Parasitology 92, 461472.Google Scholar
ALRED, D. R., CARLTON, J. M. R., SATCHER, R. L., LONG, J. A., BROWN, W. C., PATTERSON, P. E., O'CONNOR, R. M. & STROUP, S. E. (2000). The ves multigene family of B. bovis encodes components of rapid antigenic variation at the infected erythrocyte surface. Molecular Cell 5, 153162.Google Scholar
BARRY, J. D. (1986). Antigenic variation during Trypanosoma vivax infections of different host species. Parasitology 92, 5165.CrossRefGoogle Scholar
BARRY, J. D. & MCCULLOCH, R. (2001). Antigenic variation in Trypanosomes: Enhanced phenotypic variation in a eukaryotic parasite. Advances in Parasitology 49, 170.Google Scholar
BRANNAN, L. R., TURNER, C. M. R. & PHILLIPS, R. S. (1994). Malaria parasites undergo antigenic variation at high rates in vivo. Proceedings of the Royal Society London B 256, 7175. CrossRefGoogle Scholar
BRAYTON, K. A., PALMER, G. H., LUNDGREN, A., YI, J. & BARBET, F. (2002). Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion. Molecular Microbiology 43, 11511159.CrossRefGoogle Scholar
BORST, P., BITTER, W., BLUNDELL, P. A., CHAVES, I., CROSS, M., GERRITS, H., VAN LEUVEN, F., MCCULLOUGH, R., TAYLOR, M. & RUDENKO, G. (1998). Control of VSG gene expression sites in Trypanosoma brucei. Molecular and Biochemical Parasitology 91, 6776.CrossRefGoogle Scholar
CARON, F. & MEYER, E. (1989). Molecular basis of surface antigen variation in paramecia. Annual Reviews of Microbiology 43, 2342.CrossRefGoogle Scholar
CRAIG, A. & SCHERF, A. (2001). Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Molecular and Biochemical Parasitology 115, 129143.CrossRefGoogle Scholar
CROSS, G. A. M., WIRTZ, L. E. & NAVARRO, M. (1998). Regulation of VSG expression site transcription and switching in Trypanosoma brucei. Molecular and Biochemical Parasitology 91, 7791.CrossRefGoogle Scholar
DEITSCH, K. W., MOXON, E. R. & WELLEMS, T. E. (1997). Shared themes of antigenic variation and virulence in bacterial, protozoal and fungal infections. Microbiology and Molecular Biology Reviews 61, 281293.Google Scholar
DEL PORTILLO, H. A., FERNANDEZ-BECERRA, C., BOWMAN, S., OLIVER, K., PREUSS, M., SANCHEZ, C. P., SCHNEIDER, N. K., VILLALOBOS, J. M., RAJANDREAM, M.-A., HARRIS, D., PEREIRA DA SILVA, L., BARRELL, B. & LANZER, M. (2001). A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature 410, 839842.CrossRefGoogle Scholar
DONELSON, J. E. (1995). Mechanisms of antigenic variation in Borrelia hermsii and African Trypanosomes. Journal of Biological Chemistry 270, 77837786.CrossRefGoogle Scholar
FANTHAM, H. B. & PORTER, A. (1914). Some Minute Animal Parasites. London, Methuen & Co.
GRAY, A. R. (1965). Antigenic variation in a strain of Trypanosoma brucei transmitted by Glossina morsitans and G. palpalis. Journal of General Microbiology 41, 195214.CrossRefGoogle Scholar
HANDUNETTI, S. M., MENDIS, K. N. & DAVID, P. H. (1987). Antigenic variation of cloned Plasmodium fragile in its natural host Macaca sinica. Journal of Experimental Medicine 165, 12691282.CrossRefGoogle Scholar
HOMMEL, M., HUGHES, M., BOND, P. & CRAMPTON, J. M. (1991). Antibodies and DNA probes used to analyse variant populations of the Indochina-1 strain of Plasmodium falciparum. Infection and Immunity 59, 39753981.Google Scholar
JONES, T. W. & MCKINNELL, C. D. (1985). Antigenic variation in Trypanosoma evansi; variable antigen type development in mice, sheep and goats. Tropical Medicine and Parasitology 36, 5357.Google Scholar
KOSINSKI, R. J. (1980). Antigenic variation in trypanosomes: a computer analysis of variant order. Parasitology 80, 343357.CrossRefGoogle Scholar
MASAKE, R. A., MUSOKE, A. J. & NANTULYA, V. M. (1983). Specific antibody responses to the variable surface glycoprotein of Trypanosoma congolense in infected cattle. Parasite Immunology 5, 345355.CrossRefGoogle Scholar
MCLEAN, S. A., PEARSON, C. D. & PHILLIPS, R. S. (1982). Plasmodium chabaudi: Antigenic variation during recrudescent parasitaemias in mice. Experimental Parasitology 54, 296302.CrossRefGoogle Scholar
MCLEAN, S. A., PHILLIPS, R. S., PEARSON, C. D. & WALLIKER, D. (1987). The effect of mosquito transmission of antigenic variants of Plasmodium chabaudi. Parasitology 94, 443449. CrossRefGoogle Scholar
MOXON, E. R., RAINEY, P. B., NOWAK, M. A. & LENSKI, R. E. (1994). Adaptive evolution of highly mutable loci in pathogenic bacteria. Current Biology 4, 2433.CrossRefGoogle Scholar
NASH, T. E., CONRAD, J. T. & MERRIT, Jr., J. W. (1990). Variant specific epitopes of Giardia lamblia. Molecular and Biochemical Parasitology 42, 125132.CrossRefGoogle Scholar
PAYS, E. & NOLAN, D. P. (1998). Expression and function of surface proteins in Trypanosoma brucei. Molecular and Biochemical Parasitology 91, 336.CrossRefGoogle Scholar
PHILLIPS, R. S., BRANNAN, L. R., BALMER, P. & NEUVILLE, P. (1997). Antigenic variation during malaria infection – the contribution from the murine parasite Plasmodium chabaudi. Parasite Immunology 19, 427434.CrossRefGoogle Scholar
PREER, J. R. (1986). Surface antigens of Paramecium. In The Molecular Biology of Ciliated Protozoa (ed. J. G. Gull), pp. 301339. New York, Academic PressCrossRef
ROBERTS, D. J., CRAIG, A. G., BERENDT, A. R., PINCHES, R., NAHS, G., MARSH, K. & NEWBOLD, C. I. (1992). Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357, 689692.CrossRefGoogle Scholar
SVÄRD, S. G., MENG, T., HETSKO, M. L., MCCAFFERY, J. M. & GILLIN, F. D. (1998). Differentiation-associated surface antigen variation in the ancient eukaryote Gardia lamblia. Molecular Microbiology 30, 979989.CrossRefGoogle Scholar
TURNER, C. M. R. (1999). Antigenic variation in Trypanosoma brucei infections: a holistic view. Journal of Cell Science 112, 31873912.Google Scholar
TURNER, C. M. R. & BARRY, J. D. (1989). High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology 99, 6775.CrossRefGoogle Scholar