Skip to main content
×
×
Home

Plasmodium knowlesi: experimental model, zoonotic pathogen and golden opportunity?

  • JANET COX-SINGH (a1)
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Plasmodium knowlesi: experimental model, zoonotic pathogen and golden opportunity?
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Plasmodium knowlesi: experimental model, zoonotic pathogen and golden opportunity?
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Plasmodium knowlesi: experimental model, zoonotic pathogen and golden opportunity?
      Available formats
      ×
Abstract
Copyright
Corresponding author
*Corresponding author: School of Medicine, University of St Andrews, Medical and Biological Sciences Building, North Haugh, ST ANDREWS, Fife, KY16 9TF, Scotland. Email: Jcs26@st-andrews.ac.uk
References
Hide All
Ahmed, A. M., Pinheiro, M. M., Divis, P. C., Siner, A., Zainudin, R., Wong, I. T., Lu, C. W., Singh-Khaira, S. K., Millar, S. B., Lynch, S., Willmann, M., Singh, B., Krishna, S. and Cox-Singh, J. (2014). Disease progression in Plasmodium knowlesi malaria is linked to variation in invasion gene family members. PLoS Neglected Tropical Diseases 8, e3086.
al-Khedery, B., Barnwell, J. W. and Galinski, M. R. (1999). Antigenic variation in malaria: a 3' genomic alteration associated with the expression of a P. knowlesi variant antigen. Molecular Cell 3, 131141.
Barber, B. E., William, T., Jikal, M., Jilip, J., Dhararaj, P., Menon, J., Yeo, T. W. and Anstey, N. M. (2011). Plasmodium knowlesi malaria in children. Emerging Infectious Diseases 17, 814820.
Barber, B. E., William, T., Grigg, M. J., Menon, J., Auburn, S., Marfurt, J., Anstey, N. M. and Yeo, T. W. (2013). A prospective comparative study of knowlesi, falciparum, and vivax malaria in Sabah, Malaysia: high proportion with severe disease from Plasmodium knowlesi and Plasmodium vivax but no mortality with early referral and artesunate therapy. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 56, 383397.
Barber, B. E., Grigg, M. J., William, T., Yeo, T. W. and Anstey, N. M. (2016). Intravascular haemolysis with haemoglobinuria in a splenectomized patient with severe Plasmodium knowlesi malaria. Malaria Journal 15, 462.
Barber, B. E., Rajahram, G. S., Grigg, M. J., William, T. and Anstey, N. M. (2017). World Malaria Report: time to acknowledge Plasmodium knowlesi malaria. Malaria Journal 16, 135.
Baruch, D. I., Pasloske, B. L., Singh, H. B., Bi, X., Ma, X. C., Feldman, M., Taraschi, T. F. and Howard, R. J. (1995). Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 7787.
Brown, K. N. and Brown, I. N. (1965). Immunity to malaria: antigenic variation in chronic infections of Plasmodium knowlesi . Nature 208, 12861288.
Butcher, G. A. and Mitchell, G. H. (2016). The role of Plasmodium knowlesi in the history of malaria research. Parasitology 112. doi:10.1017/S0031182016001888.
Coatney, G. R., Collins, W. E., Warren, M. and Contacos, P. G. (1971a). Plasmodium ovale Stephens 1922. In The Primate Malarias (ed. Coatney, G. R.), pp. 171184. U.S. DREW, National Institute of Allergy and Infectious Diseases, Bethesda.
Coatney, G. R., Collins, W. E., Warren, M. and Contacos, P. G. (1971b). Plasmodium vivax (Grassi and Feletti, 1890). In The Primate Malarias (ed. Coatney, G. R.), pp. 4367. U.S. DREW, National Institute of Allergy and Infectious Diseases, Bethesda.
Cox-Singh, J. and Culleton, R. (2015). Plasmodium knowlesi: from severe zoonosis to animal model. Trends in Parasitology 31, 232238.
Cox-Singh, J., Hiu, J., Lucas, S. B., Divis, P. C., Zulkarnaen, M., Chandran, P., Wong, K. T., Adem, P., Zaki, S. R., Singh, B. and Krishna, S. (2010). Severe malaria – a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report. Malaria Journal 9, 10.
Cox-Singh, J., Singh, B., Daneshvar, C., Planche, T., Parker-Williams, J. and Krishna, S. (2011). Anti-inflammatory cytokines predominate in acute human Plasmodium knowlesi infections. PLoS ONE 6, e20541.
Craig, A. G., Grau, G. E., Janse, C., Kazura, J. W., Milner, D., Barnwell, J. W., Turner, G. and Langhorne, J. (2012). The role of animal models for research on severe malaria. PLoS Pathogens 8, e1002401.
Daneshvar, C., Davis, T. M., Cox-Singh, J., Rafa'ee, M. Z., Zakaria, S. K., Divis, P. C. and Singh, B. (2009). Clinical and laboratory features of human Plasmodium knowlesi infection. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 49, 852860.
Daneshvar, C., William, T. and Davis, T. M. (2017). Clinical features and management of Plasmodium knowlesi infections in humans. Parasitology 1 –14. doi:10.1017/S0031182016002638.
Galinski, M. R., Lapp, S. A., Peterson, M. S., Ay, F., Joyner, C. J., LE Roch, K. G., Fonseca, L. L., Voit, E. O. and Mahpic, C. (2017). Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology 116. doi: 10.1017/S0031182017001135.
Howard, R. J., Barnwell, J. W. and Kao, V. (1983). Antigenic variation of Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes. Proceedings of the National Academy of Sciences of the USA, 80, 41294133.
Kocken, C. H., Ozwara, H., van der Wel, A., Beetsma, A. L., Mwenda, J. M. and Thomas, A. W. (2002). Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infection and Immunity 70, 655660.
Lapp, S. A., Geraldo, J. A., Chien, J. T., Ay, F., Pakala, S. B., Batugedara, G., Humphrey, J., Ma, H. C., De, B. J., Le Roch, K. G., Galinski, M. R. and Kissinger, J. C. (2017). Pacbio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotation of the SICAvar gene family. Parasitology, 114. doi: 10.1017/S0031182017001329.
Loy, D. E., Liu, W., Li, Y., Learn, G. H., Plenderleith, L. J., Sundararaman, S. A., Sharp, P. M. and Hahn, B. H. (2017). Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax . International Journal for Parasitology 47, 8797.
Martinelli, A. and Culleton, R. (2016). Non-human primate malaria parasites: out of the forest and into the laboratory. Parasitology, 114. doi: 10.1017/S0031182016001335.
Moon, R. W., Hall, J., Rangkuti, F., Ho, Y. S., Almond, N., Mitchell, G. H., Pain, A., Holder, A. A. and Blackman, M. J. (2013). Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proceedings of the National Academy of Sciences of the USA 110, 531536.
Mosnier, L. O. and Lavstsen, T. (2016). The role of EPCR in the pathogenesis of severe malaria. Thrombosis Research 141(Suppl 2), S46S49.
Onditi, F. I., Nyamongo, O. W., Omwandho, C. O., Maina, N. W., Maloba, F., Farah, I. O., King, C. L., Moore, J. M. and Ozwara, H. S. (2015). Parasite accumulation in placenta of non-immune baboons during Plasmodium knowlesi infection. Malaria Journal 14, 118.
Ozwara, H., Langermans, J. A., Maamun, J., Farah, I. O., Yole, D. S., Mwenda, J. M., Weiler, H. and Thomas, A. W. (2003). Experimental infection of the olive baboon (Paplio anubis) with Plasmodium knowlesi: severe disease accompanied by cerebral involvement. The American Journal of Tropical Medicine and Hygiene 69, 188194.
Pasini, E. M., Zeeman, A. M., Voorberg-VAN DER Wel, A. and Kocken, C. H. (2016). Plasmodium knowlesi: a relevant, versatile experimental malaria model. Parasitology, 115. doi: 10.1017/S0031182016002286.
Pinheiro, M. M., Ahmed, M. A., Millar, S. B., Sanderson, T., Otto, T. D., Lu, W. C., Krishna, S., Rayner, J. C. and Cox-Singh, J. (2015). Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism. PLoS ONE 10, e0121303.
Praba-Egge, A. D., Montenegro, S., Cogswell, F. B., Hopper, T. and James, M. A. (2002). Cytokine responses during acute simian Plasmodium cynomolgi and Plasmodium knowlesi infections. The American Journal of Tropical Medicine and Hygiene 67, 586596.
Singh, B., Kim Sung, L., Matusop, A., Radhakrishnan, A., Shamsul, S. S., Cox-Singh, J., Thomas, A. and Conway, D. J. (2004). A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 10171024.
Smith, J. D., Chitnis, C. E., Craig, A. G., Roberts, D. J., Hudson-Taylor, D. E., Peterson, D. S., Pinches, R., Newbold, C. I. and Miller, L. H. (1995). Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101110.
Su, X. Z., Heatwole, V. M., Wertheimer, S. P., Guinet, F., Herrfeldt, J. A., Peterson, D. S., Ravetch, J. A. and Wellems, T. E. (1995). The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89100.
Vythilingam, I., Wong, M. L. and Wan-Yussof, W. S. (2016). Current status of Plasmodium knowlesi vectors: a public health concern? Parasitology, 19. doi: 10.1017/S0031182016000901.
Wassmer, S. C. and Grau, G. E. (2017). Severe malaria: what's new on the pathogenesis front? International Journal for Parasitology 47, 145152.
WHO (2016). Malaria Report 2016, World Health Organization . 978 92 4 151171 1. WHO, Geneva.
Yakob, L., Lloyd, A. L., Kao, R. R., Ferguson, H. M., Brock, P. M., Drakeley, C. and Bonsall, M. B. (2017). Plasmodium knowlesi invasion following spread by infected mosquitoes, macaques and humans. Parasitology, 110. doi: 10.1017/S0031182016002456.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 28
Total number of PDF views: 283 *
Loading metrics...

Abstract views

Total abstract views: 384 *
Loading metrics...

* Views captured on Cambridge Core between 16th November 2017 - 21st August 2018. This data will be updated every 24 hours.