Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-16T06:47:28.175Z Has data issue: false hasContentIssue false

Quantitative methods in the study of the pathogenesis of haemoprotozoal diseases

Published online by Cambridge University Press:  06 April 2009

G. J. Losos
Affiliation:
Veterinary Research Department, Kenya Agricultural Research Institute, P.O. Box 32, Kikuyu, Kenya
I. McMillan
Affiliation:
Veterinary Research Department, Kenya Agricultural Research Institute, P.O. Box 32, Kikuyu, Kenya
Ch. E. Minder
Affiliation:
Veterinary Research Department, Kenya Agricultural Research Institute, P.O. Box 32, Kikuyu, Kenya
K. Soulsby
Affiliation:
Veterinary Research Department, Kenya Agricultural Research Institute, P.O. Box 32, Kikuyu, Kenya

Summary

The study of pathogenicity of haemoprotozoa and the pathogenesis of the diseases they cause requires quantitative descriptions. Statistical and mathematical methods are introduced to describe infectivity, parasitaemia, total body parasitosis and the severity of diseases.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

Banks, K. L., (1978). Binding of Trypanosoma congolense to the walls of small blood vessels. Journal of Protozoology 25, 241–5.CrossRefGoogle Scholar
Brown, L. A., & Losos, G. J., (1977). A comparative study of the responses of the thymus, spleen, lymph nodes and bone marrow of the albino rat to infection with Trypanosoma congolense and Trypanosoma brucei. Research in Veterinary Science 23, 196203.Google Scholar
Bunger, W., & Mehlitz, M., (1977). Extravasales vorkommen von Trypanosoma vivax bei Rindern. Tropenmedizin und Parasitologie 28, 8–1Google Scholar
Cooley, W. S., & Lohnes, P. R., (1971). Multivariate Data Analysis. New York: Wiley & Sons.Google Scholar
Creemers, P. C.G, (1972). Counting methods for low concentrations of trypanosomes in blood. II. Accuracy of the indirect method. Experimental Parasitology 32, 348–58.Google Scholar
Crofton, H. D., (1971 a). A quantitative approach to parasitism. Parasitology 62, 179–93.CrossRefGoogle Scholar
Crofton, H. D., (1971 b). A model of host—parasite relationships. Parasitology 63, 343–64.CrossRefGoogle Scholar
Cunningham, M. P., Brown, C. G. D., Burridge, M. J., & Purnell, R. E., (1973). Cryopreservation of infective particles of Theileria parva. International Journal for Parasitology 3, 583–7.CrossRefGoogle ScholarPubMed
Fisher, R. A., (1966). The Design of Experiments, 8th ed.Edinburgh: Oliver & Boyd.Google Scholar
Fisher, R. A., Thornton, H. G., Mackenzie, W. A., (1922). The accuracy of the plating method of estimating the density of bacterial populations. Annals of Applied Biology 9, 325–59. Also in Contribution to Mathematical Statistics (Wiley, 1950).Google Scholar
Fisher, R. A., & Yates, F., (1963). Statistical Tables, 6th ed.Edinburgh: Oliver & Boyd.Google Scholar
Gavora, J. S., Parker, R. J., & McMillan, I., (1971). Mathematical model of egg production. Poultry Science 50, 1306–15.CrossRefGoogle Scholar
Hawking, F., (1978). Circadian rhythms of Trypanosoma congolens in laboratory rodents. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 592–5.CrossRefGoogle ScholarPubMed
Kruger-Thiemer, E., (1968). Pharmacokinetics and dose-concentration relationships. 3rd International Congress of Pharmacology, Sao Paulo 7, 63113.Google Scholar
Losos, G. J., & Ikede, B. O., (1972). Review of pathology of diseases on domestic and laboratory animals caused by Trypanosoma congolens, T. vivax, T. brucei. T. rhodesiense and T. gambiense. Veterinary Pathology 9, 327–32.CrossRefGoogle Scholar
Lumsden, W. H. R., (1972). Principles of viable preservation of parasitic protozoa. International Journal for Parasitology 2, 327–32.Google Scholar
Lumsden, W. H. R., Cunningham, M. P., Webber, W. A. F., Hoeve van, K., & Walker, P. J., (1963). Method for measuring the infectivity of trypansome suspensions. Experimental Parasitology 14, 269–79.CrossRefGoogle Scholar
Lumsden, W. H. R., Gitatha, S. K., & Lutz, W., (1968). Factors influencing the infectivity of Trypanosoma brucei stabilate of mice. Journal of Protozoology 15, 129–31.Google Scholar
Maxie, M. G., & Losos, G. J., (1977). Release of Trypanosoma congolens from microcirculation of cattle by Berenil. Veterinary Parasitology 3, 277–81.Google Scholar
Maxie, M. G., Losos, G. J., & Tabel, H., (1979). Experimental bovine trypanosomiasis (Trypanosoma vivax and T. congolense). I. Symptomatology and clinical pathology. Tropenmedizin und Parasitologie 30, 274–82.Google Scholar
McMillan, I., Fitz-Earle, M., Robson, D. S., & Butler, L., (1970). Quantitative genetics of fertility. Lifetime egg production in Drosophila melanogaster I and II. Genetics 65, 349–69.CrossRefGoogle Scholar
Minder, Ch. E., (1980). A note on an indirect method for estimating the number of small particles in a blood sample. Biometrics 36, 313–16.Google Scholar
Minder, Ch. E., & McMillan, I., (1977). Estimation of linear compartmental model parameters using marginal likelihood. Biometrics 33, 333–41.CrossRefGoogle Scholar
Morrison, D. F., (1967). Multivariate Statistical Methods. McGraw-Hill Series in Probability and Statistics.Google Scholar
Overdulve, J. P, & Antonisse, H. W., (1970). Measurement of the effect of low temperature on protozoa by titration. I. A mathematical model for titration, using prepatent period or survival time; with a discussion of the method of ID63. Experimental Parasitology 27, 310–22.CrossRefGoogle ScholarPubMed
Rurangirwa, F. R., (1979). Immunosuppression during Trypanosoma congolens and Trypanosoma vivax infections in Zebu Cattle (Bos indicus). Ph.D. thesis, University of Guelph, Canada.Google Scholar
Schaeffer, L. R., Minder, Ch. E., McMillan, I., & Burnside, E. B., (1977). Nonlinear techniques for predicting 305-day lactation production of Holsteins and Jerseys. Journal of Dairy Science 60, 1636–44.CrossRefGoogle Scholar
Shortley, G., & Wilkins, J. R., (1965). Independent-action and birth—death models in experimental microbiology. Bacteriological Reviews 29, 102–41.CrossRefGoogle ScholarPubMed
Van den Ingh, J. S., & de Neijs-Bakker, M. H., (1979). Pancarditis in Trypanosoma vivax infection in cattle. Tropenmedizin und Parasitologie 31, 239–43.Google Scholar