Skip to main content

The recurrent domestication of viruses: major evolutionary transitions in parasitic wasps

  • Jérémy Gauthier (a1), Jean-Michel Drezen (a1) and Elisabeth A. Herniou (a1)

Several lineages of endoparasitoid wasps, which develop inside the body of other insects, have domesticated viruses, used as delivery tools of essential virulence factors for the successful development of their progeny. Virus domestications are major evolutionary transitions in highly diverse parasitoid wasps. Much progress has recently been made to characterize the nature of these ancestrally captured endogenous viruses that have evolved within the wasp genomes. Virus domestication from different viral families occurred at least three times in parasitoid wasps. This evolutionary convergence led to different strategies. Polydnaviruses (PDVs) are viral gene transfer agents and virus-like particles of the wasp Venturia canescens deliver proteins. Here, we take the standpoint of parasitoid wasps to review current knowledge on virus domestications by different parasitoid lineages. Then, based on genomic data from parasitoid wasps, PDVs and exogenous viruses, we discuss the different evolutionary steps required to transform viruses into vehicles for the delivery of the virulence molecules that we observe today. Finally, we discuss how endoparasitoid wasps manipulate host physiology and ensure parasitism success, to highlight the possible advantages of viral domestication as compared with other virulence strategies.

Corresponding author
Author for correspondence: E. Herniou, E-mail:
Hide All

These authors contributed equally to this work.

Hide All
Abergel, C, Legendre, M and Claverie, J-M (2015) The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. Federation of European Microbiology Societies Microbiological Reviews 39, 779796. doi: 10.1093/femsre/fuv037
Agra Gothama, AA, Sikorowski, PP and McLaughlin, MR (1998) Replication of nonoccluded baculovirus associated with the parasitoid Microplitis croceipes (Hymenoptera: Braconidae) in Heliothis virescens (Lepidoptera: Noctuidae). Biological Control 12, 103110. doi: 10.1006/bcon.1998.0575.
Andrew, N, Basio, M and Kim, Y (2006) Additive effect of teratocyte and calyx fluid from Cotesia plutellae on immunosuppression of Plutella xylostella. Physiological Entomology 31, 341347. doi: 10.1111/j.1365-3032.2006.00524.x.
Asgari, S, et al. (2003) Isolation and characterization of a novel venom protein from an endoparasitoid, Cotesia rubecula (Hym: Braconidae). Archives of Insect Biochemistry and Physiology 53, 92100. doi: 10.1002/arch.10088.
Barratt, BIP, et al. (1999) Virus-like particles in the ovaries of Microctonus aethiopoides loan (Hymenoptera: Braconidae), a parasitoid of adult weevils (Coleoptera: Curculionidae). Journal of Invertebrate Pathology 73, 182188. doi: 10.1006/jipa.1998.4826.
Beck, MH, Inman, RB and Strand, MR (2007) Microplitis demolitor bracovirus genome segments vary in abundance and are individually packaged in virions. Virology 359, 179189. doi: 10.1016/j.virol.2006.09.002.
Beck, MH, et al. (2011) The encapsidated genome of Microplitis demolitor bracovirus integrates into the host Pseudoplusia includens. Journal of Virology 85, 1168511696. doi: 10.1128/JVI.05726-11.
Beckage, NE (1998) Modulation of immune responses to parasitoids by polydnaviruses. Parasitology 116(Suppl.), S57S64. doi: 10.1017/S0031182000084948.
Beckage, NE (2012) Polydnaviruses as endocrine regulators. In Beckage, NE and Drezen, J-M (ed.), Parasitoid Viruses. San Diego, USA: Academic Press, pp. 163168. doi: 10.1016/B978-0-12-384858-1.00013-8.
Beckage, NE and Buron, ID (1997) Developmental changes in teratocytes of the braconid wasp Cotesia congregata in larvae of the tobacco hornworm, Manduca sexta. Journal of Insect Physiology 43, 915930. doi: 10.1016/S0022-1910(97)00056-5.
Beckage, NE, et al. (1990) Host hemolymph monophenoloxidase activity in parasitized Manduca sexta larvae and evidence for inhibition by wasp polydnavirus. Insect Biochemistry 20, 285294. doi: 10.1016/0020-1790(90)90046-W.
Béliveau, C, et al. (2015) Genomic and proteomic analyses indicate that banchine and campoplegine polydnaviruses have similar, if not identical, viral ancestors. Journal of Virology 89, 89098921. doi: 10.1128/JVI.01001-15.
Bézier, A, et al. (2008) Bracovirus gene products are highly divergent from insect proteins. Archives of Insect Biochemistry and Physiology 67, 172187. doi: 10.1002/arch.20219.
Bézier, A, et al. (2009 a). Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323, 926930. doi: 10.1126/science.1166788.
Bézier, A, et al. (2016) Qualitative proteomic analysis of Tipula oleracea nudivirus (ToNV) occlusion bodies. Journal of General Virology 98, 284295. doi: 10.1099/jgv.0.000661.
Bézier, A, et al. (2009 b). Polydnavirus hidden face: the genes producing virus particles of parasitic wasps. Journal of Invertebrate Pathology 101, 194203. doi: 10.1016/j.jip.2009.04.006.
Bézier, A, et al. (2013) Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 2013004720130047. doi: 10.1186/1741-7007-6-38.
Bézier, A, et al. (2015) The genome of the nucleopolyhedrosis-causing virus from Tipula oleracea sheds new light on the Nudiviridae family. Journal of Virology 89, 30083025. doi: 10.1128/JVI.02884-14.
Bigler, F, Babendreier, D and Kuhlmann, U (2006) Environmental Impact of Invertebrates for Biological Control of Arthropods: Methods and Risk Assessment. Wallingford, UK: CABI Publishing.
Bigot, Y, et al. (1997) Biological and molecular features of the relationships between Diadromus pulchellus ascovirus, a parasitoid hymenopteran wasp (Diadromus pulchellus) and its lepidopteran host, Acrolepiopsis assectella. Journal of General Virology 78, 11491163. doi: 10.1099/0022-1317-78-5-1149.
Burand, JP, et al. (2012) Analysis of the genome of the sexually transmitted insect virus Helicoverpa zea Nudivirus 2. Viruses 4, 2861. doi: 10.3390/v4010028.
Burke, GR and Strand, MR (2012 a). Polydnaviruses of parasitic wasps: domestication of viruses to act as gene delivery vectors. Insects 3, 91119. doi: 10.3390/insects3010091.
Burke, GR and Strand, MR (2012 b). Deep sequencing identifies viral and wasp genes with potential roles in replication of Microplitis demolitor bracovirus. Journal of Virology 86, 32933306. doi: 10.1128/JVI.06434-11.
Burke, GR and Strand, MR (2014) Systematic analysis of a wasp parasitism arsenal. Molecular Ecology 23, 890901. doi: 10.1111/mec.12648.
Burke, GR, et al. (2013) Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLoS Pathogens 9, 114. doi: 10.1371/journal.ppat.1003348.
Burke, GR, et al. (2014) Widespread genome reorganization of an obligate virus mutualist. PLoS Genetics 10, e1004660. doi: 10.1371/journal.pgen.1004660.s007.
Burke, GR, et al. (2015) Microplitis demolitor bracovirus proviral loci and clustered replication genes exhibit distinct DNA amplification patterns during replication. Journal of Virology 89, 95119523. doi: 10.1128/JVI.01388-15.
Butcher, BA, et al. (2012) A turbo-taxonomic study of Thai Aleiodes (Aleiodes) and Aleiodes (Arcaleiodes) (Hymenoptera: Braconidae: Rogadinae) based largely on COI barcoded specimens, with rapid descriptions of 179 new species. Zootaxa 3457, 1232.
Cheng, R-L, et al. (2014) Brown planthopper nudivirus DNA integrated in its host genome. Journal of Virology 88, 53105318. doi: 10.1128/JVI.03166-13.
Chevignon, G, et al. (2014) Functional annotation of Cotesia congregata bracovirus: identification of viral genes expressed in parasitized host immune tissues. Journal of Virology 88, 87958812. doi: 10.1128/JVI.00209-14.
Chevignon, G, et al. (2015) Transcriptomic response of Manduca sexta immune tissues to parasitization by the bracovirus associated wasp Cotesia congregata. Insect Biochemistry and Molecular Biology 62, 8699. doi: 10.1016/j.ibmb.2014.12.008.
Dahlman, DL, et al. (2003) A teratocyte gene from a parasitic wasp that is associated with inhibition of insect growth and development inhibits host protein synthesis. Insect Molecular Biology 12, 527534. doi: 10.1046/j.1365-2583.2003.00439.x.
Dani, MP and Richards, EH (2010) Identification, cloning and expression of a second gene (vpr1) from the venom of the endoparasitic wasp, Pimpla hypochondriaca that displays immunosuppressive activity. Journal of Insect Physiology 56, 195203. doi: 10.1016/j.jinsphys.2009.10.006.
Dani, MP, et al. (2003) Antibacterial and proteolytic activity in venom from the endoparasitic wasp Pimpla hypochondriaca (Hymenoptera: Ichneumonidae). Journal of Insect Physiology 49, 945954. doi: 10.1016/S0022-1910(03)00163-X.
Desjardins, CA, et al. (2008) Comparative genomics of mutualistic viruses of Glyptapanteles parasitic wasps. Genome Biology 9, 1. doi: 10.1186/gb-2008-9-12-r183.
Digilio, MC, Pennacchio, F and Tremblay, E (1998) Host regulation effects of ovary fluid and venom of Aphidius ervi (Hymenoptera: Braconidae). Journal of Insect Physiology 44, 779784. doi: 10.1016/S0022-1910(98)00010-9.
Digilio, MC, et al. (2000) Host castration by Aphidius ervi venom proteins. Journal of Insect Physiology 46, 10411050. doi: 10.1016/S0022-1910(99)00216-4.
Doucet, D, et al. (2007) In vitro integration of an ichnovirus genome segment into the genomic DNA of lepidopteran cells. Journal of General Virology 88, 105113. doi: 10.1099/vir.0.82314-0.
Drezen, J-M, et al. (2016) Foreign DNA acquisition by invertebrate genomes. Journal of Invertebrate Pathology. doi: 10.1016/j.jip.2016.09.004.
Du, S and Traktman, P (1996) Vaccinia virus DNA replication: two hundred base pairs of telomeric sequence confer optimal replication efficiency on minichromosome templates. Proceedings of the National Academy of Sciences of the United States of America 93, 96939698.
Dunning Hotopp, JC, et al. (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 17531756. doi: 10.1126/science.1142490.
Dupas, S, et al. (1996) Immune suppressive virus-like particles in a Drosophila parasitoid: significance of their intraspecific morphological variations. Parasitology 113, 207212. doi: 10.1017/S0031182000081981.
Dupas, S, et al. (2008) Evolution of a polydnavirus gene in relation to parasitoid-host species immune resistance. Journal of Heredity 99, 491499. doi: 10.1093/jhered/esn047.
Dupuy, C, Gundersen-Rindal, D and Cusson, M (2012) Genomics and replication of polydnaviruses. In Beckage, NE and Drezen, J-M (ed.), Parasitoid Viruses. San Diego, USA: Academic Press, pp. 4761. doi: 10.1016/B978-0-12-384858-1.00004-7.
Dushay, MS and Beckage, NE (1993) Dose-dependent separation of Cotesia congregata-associated polydnavirus effects on Manduca sexta larval development and immunity. Journal of Insect Physiology 39, 10291040. doi: 10.1016/0022-1910(93)90127-D.
Falabella, P, et al. (2007) Characterization of the IκB-like gene family in polydnaviruses associated with wasps belonging to different braconid subfamilies. Journal of General Virology 88, 92104. doi: 10.1099/vir.0.82306-0.
Gao, F, et al. (2016) Cotesia vestalis teratocytes express a diversity of genes and exhibit novel immune functions in parasitism. Scientific Reports 6, 26967. doi: 10.1038/srep26967.
Gasmi, L, et al. (2015) Recurrent domestication by Lepidoptera of genes from their parasites mediated by bracoviruses. PLoS Genetics 11, e1005470. doi: 10.1371/journal.pgen.1005470.s007.
Gauld, ID and Bolton, B (1988) The Hymenoptera. London, UK: Oxford University Press in association with British Museum (Natural History).
Godfray, HCJ (1994) Parasitoids: Behavioral and Evolutionary Ecology. Princeton, NJ, USA: Princeton University Press.
Hamm, JJ, Styer, EL and Lewis, WJ (1988) A baculovirus pathogenic to the parasitoid Microplitis croceipes (Hymenoptera: Braconidae). Journal of Invertebrate Pathology 52, 189191.
Hawkins, BA (1994) Pattern and Process in Host-Parasitoid Interactions. Cambridge, UK: Cambridge University Press.
Henneman, ML and Memmott, J (2001) Infiltration of a Hawaiian community by introduced biological control agents. Science 293, 13141316. doi: 10.1126/science.1060788.
Henry, LM, Roitberg, BD and Gillespie, DR (2008) Host-range evolution in Aphidius parasitoids: fidelity, virulence and fitness trade-offs on an ancestral host. Evolution 62, 689699. doi: 10.1111/j.1558-5646.2007.00316.x.
Herniou, EA, et al. (2013) When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses. Philosophical Transactions of the Royal Society of London. Series B. 368, 20130051. doi: 10.1098/rstb.2013.0051.
Hoover, K, et al. (2011) A gene for an extended phenotype. Science 333, 1401. doi: 10.1126/science.1209199.
Husnik, F, et al. (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153, 15671578. doi: 10.1016/j.cell.2013.05.040.
Jacas, JA, et al. (1997) Virus-like particles in the poison gland of the parasitic wasp Opius concolor. Annals of Applied Biology 130, 587592. doi: 10.1111/j.1744-7348.1997.tb07685.x.
Jancek, S, et al. (2013) Adaptive selection on bracovirus genomes drives the specialization of Cotesia parasitoid wasps. PLoS ONE 8(5), e64432. doi: 10.1371/journal.pone.0064432.
Kadono-Okuda, K, et al. (1995) Synchronous growth of a parasitoid, Perilitus coccinellae, and teratocytes with the development of the host, Coccinella septempunctata. Entomologia Experimentalis et Applicata 75, 145149. doi: 10.1111/j.1570-7458.1995.tb01920.x.
Kaiser, L, et al. (2015) Ongoing ecological speciation in Cotesia sesamiae, a biological control agent of cereal stem borers. Evolutionary Applications 8, 807–20. doi: 10.1111/eva.12260.
Kariithi, HM, et al. (2010) Proteomic analysis of Glossina pallidipes salivary gland hypertrophy virus virions for immune intervention in tsetse fly colonies. Journal of General Virology 91, 30653074. doi: 10.1099/vir.0.023671-0.
Kim, JC and Orr-Weaver, TL (2011) Analysis of a Drosophila amplicon in follicle cells highlights the diversity of metazoan replication origins. Proceedings of the National Academy of Sciences of the United States of America 108, 1668116686. doi: 10.1073/pnas.1114209108.
Kornberg, A and Baker, TA (2005) DNA replication. Sausalito, CA: University Science.
Kraaijeveld, AR and Van Alphen, JJM (1995) Geographical variation in encapsulation ability of Drosophila melanogaster larvae and evidence for parasitoid-specific components. Evolutionary Ecology 9, 1017. doi: 10.1007/BF01237692.
Lavialle, C, et al. (2013) Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20120507. doi: 10.1186/1742-4690-2-19.
Leclercq, S, et al. (2016) Birth of a W sex chromosome by horizontal transfer of Wolbachia bacterial symbiont genome. Proceedings of the National Academy of Sciences of the United States of America 113, 15036–15041. doi: 10.1073/pnas.1608979113.
Lin, CL, et al. (1999) Persistent Hz-1 virus infection in insect cells: evidence for insertion of viral DNA into host chromosomes and viral infection in a latent status. Journal of Virology 73, 128139.
Login, FH, et al. (2011) Antimicrobial peptides keep insect endosymbionts under control. Science 334, 362365. doi: 10.1126/science.1209728.
Louis, F, et al. (2013) The bracovirus genome of the parasitoid wasp Cotesia congregata is amplified within 13 replication units, including sequences not packaged in the particles. Journal of Virology 87, 96499660. doi: 10.1128/JVI.00886-13.
Masson, F, et al. (2015) Weevil endosymbiont dynamics is associated with a clamping of immunity. BMC Genomics 16, 819. doi: 10.1186/s12864-015-2048-5.
Moran, NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proceedings of the National Academy of Sciences of the United States of America 104, 86278633. doi: 10.1073/pnas.0611659104.
Moreau, SJM (2013) ‘It stings a bit but it cleans well’: venoms of Hymenoptera and their antimicrobial potential. Journal of Insect Physiology 59, 186204. doi: 10.1016/j.jinsphys.2012.10.005.
Moreau, SJM and Asgari, S (2015) Venom proteins from parasitoid wasps and their biological functions. Toxins 7, 23852412. doi: 10.3390/toxins7072385.
Moreau, SJM, et al. (2002) Effects of parasitism by Asobara tabida (Hymenoptera: Braconidae) on the development, survival and activity of Drosophila melanogaster larvae. Journal of Insect Physiology 48, 337347. doi: 10.1016/S0022-1910(02)00051-3.
Muirhead, KA, et al. (2012) Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers. Molecular Phylogenetics and Evolution 63, 904914. doi: 10.1016/j.ympev.2012.03.003.
Murphy, N, et al. (2008) Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Molecular Phylogenetics and Evolution 47, 378395. doi: 10.1016/j.ympev.2008.01.022.
Nakamatsu, Y, Fujii, S and Tanaka, T (2002) Larvae of an endoparasitoid, Cotesia kariyai (Hymenoptera: Braconidae), feed on the host fat body directly in the second stadium with the help of teratocytes. Journal of Insect Physiology 48, 10411052. doi: 10.1016/S0022-1910(02)00192-0.
Osman, SE (1974) Parasitentoleranz von schmetterlingspuppen maskierung der parasiteneier mit mucopolysacchariden. Naturwissenschaften 61, 453454.
Pasquier-Barre, F, et al. (2002) Polydnavirus replication: the EP1 segment of the parasitoid wasp Cotesia congregata is amplified within a larger precursor molecule. Journal of General Virology 83, 20352045. doi: 10.1099/0022-1317-83-8-2035.
Peng, K, et al. (2010) Baculovirus per os infectivity factors form a complex on the surface of occlusion-derived virus. Journal of Virology 84, 94979504. doi: 10.1128/JVI.00812-10.
Pennacchio, F and Strand, MR (2006) Evolution of developmental strategies in parasitic Hymenoptera. Annual Review of Entomology 51, 233258. doi: 10.1146/annurev.ento.51.110104.151029.
Pichon, A, et al. (2015) Recurrent DNA virus domestication leading to different parasite virulence strategies. Science Advances 1, e1501150e1501150. doi: 10.1126/sciadv.1501150.
Piek, T (1990) Neurotoxins from venoms of the Hymenoptera – twenty-five years of research in Amsterdam. Comparative Biochemistry and Physiology. C: Comparative Pharmacology and Toxicology 96, 223233. doi: 10.1016/0742-8413(90)90001-P.
Provost, B, et al. (2004) Bracoviruses contain a large multigene family coding for protein tyrosine phosphatases. Journal of Virology 78, 1309013103. doi: 10.1128/JVI.78.23.13090-13103.2004.
Quicke, DLJ (2015) The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology. Oxford, UK: Wiley-Blackwell.
Raina, AK, et al. (2000) Further characterization of the gonad-specific virus of corn earworm, Helicoverpa zea. Journal of Invertebrate Pathology 76, 612. doi: 10.1006/jipa.2000.4942.
Rodriguez, JJ, et al. (2013) Extrapolations from field studies and known faunas converge on dramatically increased estimates of global microgastrine parasitoid wasp species richness (Hymenoptera: Braconidae). Insect Conservation and Diversity 6, 530536. doi: 10.1111/icad.12003.
Rohrmann, G. F (2013) Baculovirus Molecular Biology, 3rd Edn. National Center for Biotechnology Information, Bethesda, USA.
Ros, VID, et al. (2015) Baculovirus-induced tree-top disease: how extended is the role of egt as a gene for the extended phenotype? Molecular Ecology 24, 249258. doi: 10.1111/mec.13019.
Rotheram, S (1967) Immune surface of eggs of a parasitic insect. Nature 214, 700. doi: 10.1038/214700a0.
Savary, S, et al. (1997) Excision of the polydnavirus chromosomal integrated EP1 sequence of the parasitoid wasp Cotesia congregata (Braconidae, Microgastrinae) at potential recombinase binding sites. Journal of General Virology 78, 31253134. doi: 10.1099/0022-1317-78-12-3125.
Savary, S, et al. (1999) The excision of polydnavirus sequences from the genome of the wasp Cotesia congregata (Braconidae, Microgastrinae) is developmentally regulated but not strictly restricted to the ovaries in the adult. Insect Molecular Biology 8, 319327. doi: 10.1046/j.1365-2583.1999.83130.x.
Serbielle, C, et al. (2008) Viral cystatin evolution and three-dimensional structure modelling: a case of directional selection acting on a viral protein involved in a host-parasitoid interaction. BMC Biology 6, 38. doi: 10.1186/1741-7007-6-38.
Serbielle, C, et al. (2009) Identification of parasite-responsive cysteine proteases in Manduca sexta. Biological Chemistry 390, 493502. doi: 10.1515/BC.2009.061.
Serbielle, C, et al. (2012) Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases. BMC Evolutionary Biology 12, 253. doi: 10.1186/1471-2148-12-253.
Shaw, MR and Quicke, DLJ (2000) The biology and early stages of Acampsis alternipes (Nees), with comments on the relationships of the Sigalphinae (Hymenoptera: Braconidae). Journal of Natural History 34, 611628. doi: 10.1080/002229300299471.
Smith, AM, et al. (2013) DNA barcoding and the taxonomy of Microgastrinae wasps (Hymenoptera, Braconidae): impacts after 8 years and nearly 20 000 sequences. Molecular Ecology Resources 13, 168–76. doi: 10.1111/1755-0998.12038.
Stoltz, DB and Cook, DI (1983) Inhibition of host phenoloxidase activity by parasitoid hymenoptera. Experientia 39, 10221024. doi: 10.1007/BF01989783.
Stoltz, DB and Krell, P (2012) The Origins and Early History of Polydnavirus Research. In Beckage, NE and Drezen, J-M (ed.), Parasitoid Viruses: Symbionts and Pathogens. London, UK: Academic Press, pp. 513.
Stoltz, DB and Vinson, SB (1979) Viruses and parasitism in insects. Advances in Virus Research 24, 125–71.
Stoltz, DB and Whitfield, JB (2009) Making nice with viruses. Science 323, 884885. doi: 10.1126/science.1169808.
Strand, MR and Burke, GR (2014) Polydnaviruses: nature's genetic engineers. Annual Review of Virology 1, 333354. doi: 10.1146/annurev-virology-031413-085451.
Strand, MR and Dover, BA (1991) Developmental disruption of Pseudoplusia includens and Heliothis virescens larvae by the calyx fluid and venom of Microplitis demolitor. Archives of Insect Biochemistry and Physiology 18, 131145. doi: 10.1002/arch.940180302.
Strand, MR and Wong, EA (1991) The growth and role of Microplitis demolitor teratocytes in parasitism of Pseudoplusia includens. Journal of Insect Physiology 37, 503515. doi: 10.1016/0022-1910(91)90027-W.
Suzuki, M and Tanaka, T (2006) Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis. Journal of Insect Physiology 52, 602613. doi: 10.1016/j.jinsphys.2006.02.009.
Tanaka, T (1987) Calyx and venom fluids of Apanteles kariyai (Hymenoptera: Braconidae) as factors that prolong larval period of the host, Pseudaletia separata (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 80, 530533. doi: 10.1093/aesa/80.4.530.
Tanaka, T and Wago, H (1990) Ultrastructural and functional maturation of teratocytes of Apanteles kariyai. Archives of Insect Biochemistry and Physiology 13, 187197. doi: 10.1002/arch.940130306.
Thézé, J, et al. (2011) Paleozoic origin of insect large dsDNA viruses. Proceedings of the National Academy of Sciences of the United States of America 108, 1593115935. doi: 10.1073/pnas.1105580108.
van Houte, S, Ros, VID and van Oers, MM (2014) Hyperactivity and tree-top disease induced by the baculovirus AcMNPV in Spodoptera exigua larvae are governed by independent mechanisms. Die Naturwissenschaften 101, 347350. doi: 10.1007/s00114-014-1160-8.
van Rij, RP and Berezikov, E (2009) Small RNAs and the control of transposons and viruses in Drosophila. Trends in Microbiology 17, 163171. doi: 10.1016/j.tim.2009.01.003.
van Valen, L (1973) A new evolutionary law. Evolutionary Theory 1, 1–30.
Vincent, B, et al. (2010) The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach. BMC Genomics 11, 693. doi: 10.1186/1471-2164-11-693.
Volkoff, A-N, et al. (2010) Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathogens 6, 110. doi: 10.1371/journal.ppat.1000923.
Volkoff, A-N, et al. (2012) The organization of genes encoding ichnovirus structural proteins. In Beckage, NE and Drezen, J-M (ed.), Parasitoid Viruses. San Diego, USA: Academic Press, pp. 3345. doi: 10.1016/B978-0-12-384858-1.00003-5.
Wang, J and Aksoy, S (2012) PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse's offspring. Proceedings of the National Academy of Sciences of the United States of America 109, 1055210557. doi: 10.1073/pnas.1116431109.
Wang, Y, Burand, JP and Jehle, JA (2007 a). Nudivirus genomics: diversity and classification. Virologica Sinica 22, 128136. doi: 10.1007/s12250-007-0014-3.
Wang, Y, et al. (2007 b). The genome of Gryllus bimaculatus nudivirus indicates an ancient diversification of baculovirus-related nonoccluded nudiviruses of insects. Journal of Virology 81, 53955406. doi: 10.1128/JVI.02781-06.
Wang, Y, et al. (2011) The genome of Oryctes rhinoceros nudivirus provides novel insight into the evolution of nuclear arthropod-specific large circular double-stranded DNA viruses. Virus Genes 42, 444456. doi: 10.1007/s11262-011-0589-5.
Wang, Y, Bininda-Emonds, ORP and Jehle, JA (2012) Nudivirus genomics and phylogeny. In Garcia, M. L and Romanowski, V (ed.), The Viral Genome: Molecular Structure, Diversity, Gene Expression Mechanisms and Host-Virus Interactions. InTech, Rijeka, Croatia, pp. 33–52.
Weber, B, Annaheim, M and Lanzrein, B (2007) Transcriptional analysis of polydnaviral genes in the course of parasitization reveals segment-specific patterns. Archives of Insect Biochemistry and Physiology 66, 922. doi: 10.1002/arch.20190.
Weller, SK and Coen, DM (2012) Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harbor Perspectives in Biology 4, a013011. doi: 10.1101/cshperspect.a013011.
Wetterwald, C, et al. (2010) Identification of bracovirus particle proteins and analysis of their transcript levels at the stage of virion formation. Journal of General Virology 91, 26102619. doi: 10.1099/vir.0.022699-0.
Whitfield, JB (2002) Estimating the age of the polydnavirus/braconid wasp symbiosis. Proceedings of the National Academy of Sciences of the United States of America 99, 75087513. doi: 10.1073/pnas.112067199.
Whitfield, JB and O’Connor, JM (2012) Molecular systematics of wasp and polydnavirus genomes and their coevolution. In Beckage, NE and Drezen, J-M (ed.), Parasitoid Viruses. San Diego, USA: Academic Press, pp. 8997. doi: 10.1016/B978-0-12-384858-1.00007-2.
Zhang, G, et al. (2004) Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochemistry and Molecular Biology 34, 477483. doi: 10.1016/j.ibmb.2004.02.009.
Zhu, J-Y, et al. (2009) Venom of Pteromalus puparum (Hymenoptera: Pteromalidae) induced endocrine changes in the hemolymph of its host, Pieris rapae (Lepidoptera: Pieridae). Archives of Insect Biochemistry and Physiology 71, 4553. doi: 10.1002/arch.20304.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed