Skip to main content Accessibility help
×
Home

Relative contribution of day-to-day and intra-specimen variation in faecal egg counts of Schistosoma mansoni before and after treatment with praziquantel

  • J. UTZINGER (a1) (a2) (a3), M. BOOTH (a4), E. K. N'GORAN (a2) (a5), I. MÜLLER (a1), M. TANNER (a1) and C. LENGELER (a1)...

Abstract

There is evidence that faecal egg counts of Schistosoma mansoni vary considerably from day to day, which results in poor sensitivity of single stool readings. Intra-specimen variation of S. mansoni egg counts may also be considerable, but has previously been considered as the less important component. We quantified the relative contribution of these two sources of variation among 96 schoolchildren from an area in Côte d'Ivoire highly endemic for S. mansoni. Stool specimens were collected over 5 consecutive days, and 5 egg-counts were made in each specimen by the Kato–Katz technique. The point prevalence of the first sample was 42.7% and the cumulative prevalence after the maximum sampling effort was 88.5%. Using generalized linear mixed models we found that the presence of S. mansoni eggs in a stool sample varied much more between days than within specimens, indicating that stool sample examination over multiple days is required for accurate prevalence estimates. However, using the same approach, we found that among infected children intra-specimen variation in egg counts was 4.3 times higher than day-to-day variation. After praziquantel administration, day-to-day variation was more important than before, since most infections were very light and thus likely to be missed altogether by stool examination on a single day. We conclude that diagnostic sensitivity in high transmission areas is maximized by making several stool readings on several days, but examining 1 stool specimen several times can make reasonable estimates of infection intensity.

Copyright

Corresponding author

Corresponding author: Swiss Tropical Institute, PO Box, CH-4002 Basel, Switzerland. Tel: +41 61 284 8221. Fax: +41 61 271 7951. E-mail: christian.lengeler@unibas.ch

References

Hide All
ANDERSON, R. M & MAY, R. M. (1985). Helminth infections of humans: mathematical models, population dynamics, and control. Advances in Parasitology 24, 1101.
BARRETO, M. L., SILVA, J. T. F., MOTT, K. E. & SEHMAN, J. S. (1978). Stability of faecal egg excretion in Schistosoma mansoni infection. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 181187.
BARRETO, M. L., SMITH, D. H. & SLEIGH, A. C. (1990). Implication of faecal egg count variation when using the Kato–Katz method to assess Schistosoma mansoni infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 554555.
BRADLEY, D. J. (1972). Regulation of parasite populations: a general theory of the epidemiology and control of parasitic infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 66, 697708.
BUTTERWORTH, A. E., CAPRON, M., CORDINGLEY, J. S., DALTON, P. R., DUNNE, D. W., KARIUKI, H. C., KIMANI, G., KOECH, D., MUGAMBI, M., OUMA, J. H., PRENTICE, M. A., RICHARDSON, B. A., ARAP SIONGOK, T. K., STURROCK, R. F. & TAYLOR, D. W. (1985). Immunity after treatment of human schistosomiasis mansoni. II. Identification of resistant individuals, and analysis of their immune responses. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 393408.
DE VLAS, S. J., ENGELS, D., RABELLO, A. L. T., OOSTBURG, B. F. J., VAN LIESHOUT, L., POLDERMAN, A. M., VANOORTMARSSEN, G. J., HABBEMA, J. D. F. & GRYSEELS, B. (1997). Validation of a chart to estimate true Schistosoma mansoni prevalences from simple egg counts. Parasitology 114, 113121.
DE VLAS, S. J. & GRYSEELS, B. (1992). Underestimation of Schistosoma mansoni prevalences. Parasitology Today 8, 274277.
DE VLAS, S. J., GRYSEELS, B., VAN OORTMARSSEN, G. L., POLDERMAN, A. M. & HABBEMA, J. D. F. (1992). A model for variations in single and repeated egg counts in Schistosoma mansoni infections. Parasitology 104, 451460.
DOENHOFF, M. J. (1998). Is schistosomicidal chemotherapy sub-curative? Implications for drug resistance. Parasitology Today 14, 434435.
ENGELS, D., NAHIMANA, S., DE VLAS, S. J. & GRYSEELS, B. (1997b). Variation in weight of stool samples prepared by the Kato–Katz method and its implications. Tropical Medicine and International Health 2, 265271.
ENGELS, D., SINZINKAYO, E. & GRYSEELS, B. (1996). Day-to-day egg count fluctuation in Schistosoma mansoni infection and its operational implications. American Journal of Tropical Medicine and Hygiene 54, 319324.
ENGELS, D., SINZINKAYO, E. & GRYSEELS, B. (1997a). Intraspecimen fecal egg count variation in Schistosoma mansoni infection. American Journal of Tropical Medicine and Hygiene 57, 571577.
GÖNNERT, R. & ANDREWS, P. (1977). Praziquantel, a new broad-spectrum antischistosomal agent. Zeitschrift für Parasitenkunde 52, 129150.
GRYSEELS, B., NKULIKYINKA, L. & ENGELS, D. (1991). Repeated community-based chemotherapy for control of Schistosoma mansoni: effect of screening and selective treatment on prevalences and intensities of infection. American Journal of Tropical Medicine and Hygiene 45, 509517.
HALL, A. (1981). Quantitative variability of nematode egg counts in faeces: a study among rural Kenyans. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 682687.
KATZ, N., CHAVES, A. & PELLEGRINO, J. (1972). A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Revista do Instituto Medicina Tropical de Sao Paulo 14, 397400.
KNIGHT, W. B., HIATT, R. A., CLINE, B. L. & RICHIE, L. S. (1976). A modification of the formol-ether concentration technique for increased sensitivity in detection of Schistosoma mansoni eggs. American Journal of Tropical Medicine and Hygiene 25, 818823.
MARTIN, L. K. & BEAVER, P. C. (1968). Evaluation of Kato thick-smear technique for quantitative diagnosis of helminth infections. American Journal of Tropical Medicine and Hygiene 17, 382391.
PIT, D. S. S., DE GRAAF, W., SNOEK, H., DE VLAS, S. J., BAETA, S. M. & POLDERMAN, A. M. (1999). Diagnosis of Oesophagostum bifurcum and hookworm infection in humans: day-to-day and within-specimen variation of larval counts. Parasitology 118, 283288.
POLDERMAN, A. M. (1979). Transmission dynamics of endemic schistosomiasis. Tropical and Geographical Medicine 31, 465475.
RATARD, R. C., KOUEMENI, L., EKANI BESSALA, M. M. & NDAMKOU, N. C. (1990). Distribution and preservation of Schistosoma mansoni eggs in stools. Journal of Tropical Medicine and Hygiene 93, 413416.
SABAH, A. A., FLETCHER, C., WEBBE, G. & DOENHOFF, M. J. (1986). Schistosoma mansoni: chemotherapy of infections of different ages. Experimental Parasitology 61, 294303.
SCHALL, R. (1991). Estimation in generalized linear models with random effects. Biometrika 78, 719727.
SLEIGH, A., HOFF, R., MOTT, K., BARRETO, M., MAISK DEPAIVA, T., DE SOUZA PEDROSA, J. & SHERLOCK, I. (1982). Comparison of filtration staining (Bell) and thick smear (Kato) for the detection and quantification of Schistosoma mansoni eggs in faeces. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 403406.
TEESDALE, C. H., FAHRINGER, K. & CHITSULO, L. (1985). Egg count variability and sensitivity of a thin smear technique for the diagnosis of Schistosoma mansoni. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 369373.
UTZINGER, J., N'GORAN, E. K., ESSE AYA, C. M., ACKAADJOUA, C., LOHOURIGNON, K. L., TANNER, M. & LENGELER, C. (1998). Schistosoma mansoni, intestinal parasites and perceived morbidity indicators in schoolchildren in a rural endemic area of western Côte d'Ivoire. Tropical Medicine and International Health 3, 711720.
UTZINGER, J., N'GORAN, E. K., OSSEY, Y. A., BOOTH, M., TRAORÉ, M., LOHOURIGNON, K. L., ALLANGBA, A., AHIBA, L. A., TANNER, M. & LENGELER, C. (2000a). Rapid screening for Schistosoma mansoni in western Côte d'Ivoire using a simple school questionnaire. Bulletin of the World Health Organization 78, 389398.
UTZINGER, J., N'GORAN, E. K., N'DRI, A., LENGELER, C. & TANNER, M. (2000b). Efficacy of praziquantel against Schistosoma mansoni with particular consideration of intensity of infection. Tropical Medicine and International Health 5, 771778.
WILKINS, H. A. (1989). Reinfection after treatment of schistosomiasis infections. Parasitology Today 5, 8388.
WORLD HEALTH ORGANIZATION (1993). The control of schistosomiasis: second report of the WHO Expert Committee. WHO Technical Report Series No. 830. World Health Organization, Geneva.
WORLD HEALTH ORGANIZATION (1999). Report of the WHO Informal Consultation on Schistosomiasis Control. WHO/CDS/CPC/SIP/99.2. World Health Organization, Geneva.
XIAO, S. H., CATTO, B. A. & WEBSTER, L. T. (1985). Effects of praziquantel on different developmental stages of Schistosoma mansoni in vitro and in vivo. Journal of Infectious Diseases 151, 11301137.
YE, X.-P., DONNELLY, C. A., ANDERSON, R. M., FU, Y.-L. & AGNEW, A. (1998). The distribution of Schistosoma japonicum eggs in faeces and the effect of stirring faecal specimens. Annals of Tropical Medicine and Parasitology 92, 181185.
YU, J. M., DE VLAS, S. J., YUAN, H. C. & GRYSEELS, B. (1998). Variations in fecal Schistosoma japonicum egg counts. American Journal of Tropical Medicine and Hygiene 59, 370375.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed