Skip to main content
×
×
Home

Resistance towards monensin is proposed to be acquired in a Toxoplasma gondii model by reduced invasion and egress activities, in addition to increased intracellular replication

  • AHMED THABET (a1), JOHANNES SCHMIDT (a2), SVEN BAUMANN (a2) (a3), WALTHER HONSCHA (a4), MARTIN VON BERGEN (a2) (a5) (a6), ARWID DAUGSCHIES (a1) (a7) and BERIT BANGOURA (a1) (a8)...
Summary

Monensin (Mon) is an anticoccidial polyether ionophore widely used to control coccidiosis. The extensive use of polyether ionophores on poultry farms resulted in widespread resistance, but the underlying resistance mechanisms are unknown in detail. For analysing the mode of action by which resistance against polyether ionophores is obtained, we induced in vitro Mon resistance in Toxoplasma gondii-RH strain (MonR-RH) and compared it with the sensitive parental strain (Sen-RH). The proteome assessment of MonR-RH and Sen-RH strains was obtained after isotopic labelling using stable isotope labelling by amino acid in cell culture. Relative proteomic quantification between resistant and sensitive strains was performed using liquid chromatography-mass spectrometry/mass spectrometry. Overall, 1024 proteins were quantified and 52 proteins of them were regulated. The bioinformatic analysis revealed regulation of cytoskeletal and transmembrane proteins being involved in transport mechanisms, metal ion-binding and invasion. During invasion, actin and microneme protein 8 (MIC8) are seem to be important for conoid extrusion and forming moving junction with host cells, respectively. Actin was significantly upregulated, while MIC8 was downregulated, which indicate an invasion reduction in the resistant strain. Resistance against Mon is not a simple process but it involves reduced invasion and egress activity of T. gondii tachyzoites while intracellular replication is enhanced.

Copyright
Corresponding author
*Corresponding author: Department of Veterinary Sciences, WSVL, 1174 Snowy Range Rd, 82070 Laramie, WY, USA. E-mail: bbangour@uwyo.edu
References
Hide All
Borges-Pereira, L., Budu, A., McKnight, C., Moore, C., Vella, S., Triana, M., Liu, J., Garcia, C., Pace, D. and Moreno, S. (2015). Calcium signaling throughout the Toxoplasma gondii lytic cycle. A study using genetically encoded calcium indicators. The Journal of Biological Chemistry 290, 2691426926.
Brumlik, M. J., Wei, S., Finstad, K., Nesbit, J., Hyman, L. E., Lacey, M., Burow, M. E. and Curiel, T. J. (2004). Identification of a novel mitogen-activated protein kinase in Toxoplasma gondii . International Journal of Parasitology 34, 12451254.
Brunelle, J. L. and Green, R. (2014). One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods in Enzymology 541, 151159.
Caldas, L. A., de Souza, W. and Attias, M. (2007). Calcium ionophore-induced egress of Toxoplasma gondii shortly after host cell invasion. Veterinary Parasitology 147, 210220.
Cérède, O., Dubremetz, J., Soête, M., Deslée, D., Vial, H., Bout, D. and Lebrun, M. (2005). Synergistic role of micronemel protein in Toxoplasma gondii virulence. The Journal of Experimental Medicine 201, 453463.
Chapman, H. D., Jeffers, T. K. and Williams, R. B. (2010). Forty years of monensin for the control of coccidiosis in poultry. Poultry Science 89, 17881801.
Chen, T., Zhang, W., Wang, J., Dong, H. and Wang, M. (2008). Eimeria tenella: analysis of differentially expressed genes in the monensin- and maduramicin-resistant lines using cDNA array. Experimental Parasitology 119, 264271.
Cherry, A. A. and Ananvoranich, S. (2014). Characterization of a homolog of DEAD-box RNA helicases in Toxoplasma gondii as a marker of cytoplasmic mRNP stress granules. Gene 543, 3444.
Couzinet, S., Dubremetz, J. F., Buzoni-Gatel, D., Jeminet, G. and Prensier, G. (2000). In vitro activity of the polyether ionophorous antibiotic monensin against the cyst form of Toxoplasma gondii . Parasitology 121, 359365.
Del Carmen, M. G., Mondragón, M., González, S. and Mondragón, R. (2009). Induction and regulation of conoid extrusion in Toxoplasma gondii . Cellular Microbiology 11, 967982.
Dobrowolski, J. M., Niesman, I. R and Sibley, L. D. (1997). Actin in the parasite Toxoplasma gondii is encoded by a single copy gene, ACT1 and exists primarily in a globular form. Cell Motility and the Cytoskeleton 37, 253262.
Doliwa, C., Xia, D., Escotte-Binet, S., Newsham, E. L., Sanya, J. S., Aubert, D., Randle, N., Wastling, J. M. and Villena, I. (2013). Identification of differentially expressed proteins in sulfadiazine resistant and sensitive strains of Toxoplasma gondii using difference-gel electrophoresis (DIGE). International Journal of Parasitology: Drugs and Drug Resistance 3, 3544.
Dou, Z. and Carruthers, V. B. (2011). Cathepsin proteases in Toxoplasma gondii . Advances in Experimental Medicine and Biology 712, 4961.
Dubey, J. P., Velmurugan, G. V., Rajendran, C., Yabsley, M. J., Thomas, N. J., Beckmen, K. B., Sinnett, D., Ruid, D., Hart, J., Fair, P. A., McFee, W. E., Shearn-Bochsler, V., Kwok, O. C. H., Ferreira, L. R., Choudhary, S., Faria, E. B., Zhou, H., Felix, T. A. and Su, C. (2011). Genetic characterisation of Toxoplasma gondii in wildlife from North America revealed widespread and high prevalence of the fourth clonal type. International Journal of Parasitology 41, 11391147.
Dzierszinski, F., Nishi, M., Ouko, L. and Roos, D. (2004). Dynamics of Toxoplasma gondii differentiation. Eukaryotic cell 3, 9921003.
Edvinsson, B., Lappalainen, M. and Evengård, B., ESCMID Study Group for Toxoplasmosis. (2006). Real-time PCR targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Clinical Microbiology and Infection 12, 131136.
Fedyanina, O. S., Book, A. J. and Grishchuk, E. L. (2009). Tubulin heterodimers remain functional for one cell cycle after the inactivation of tubulin-folding cofactor D in fission yeast cells. Yeast 26, 235247.
Field, M. C., Ali, B. R. and Field, H. (1999). GTPases in protozoan parasites: tools for cell biology and chemotherapy. Parasitology Today 15, 365371.
Garrison, E. and Arrizabalaga, G. (2009). Disruption of a mitochondrial MutS DNA repair enzyme homologue confers drug resistance in the parasite Toxoplasma gondii . Molecular Microbiology 72, 425441.
Georgieva, D., Risch, M., Kardas, A., Buck, F., von Bergen, M. and Betzel, C. (2008). Comparative analysis of the venom proteomes of Vipera ammodytes and Vipera ammodytes meridionalis. Journal of Proteome Research 7, 866886.
Heaslip, A. T., Leung, J. M., Carey, K. L., Catti, F., Warshaw, D. M., Westwood, N. J., Ballif, B. A. and Ward, G. E. (2010). A small-molecule inhibitor of T. gondii motility induces the posttranslational modification of myosin light chain-1 and inhibits myosin motor activity. PLoS Pathogens 6, e1000720.
Heaslip, A. T., Nelson, S. R. and Warshaw, D. M. (2016). Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments. Molecular Biology of the Cell 27, 20802089.
Hu, K., Mann, T., Striepen, B., Beckers, C., Roos, D. and Murray, J. (2002). Daughter cell assembly in the protozoan parasite Toxoplasma gondii . Molecular Biology of the Cell 13, 593606.
Kessler, H., Herm-Götz, A., Hegge, S., Rauch, M., Soldati-Favre, D., Frischknecht, F. and Meissner, M. J. (2008). Microneme protein 8 – a new essential invasion factor in Toxoplasma gondii . Journal of Cell Science 121, 947956.
Kevin, D. A., Meujo, D. A. and Hamann, M. T. (2009). Polyether ionophores: broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opinion on Drug Discovery 4, 109146.
Khaminets, A., Hunn, J. P., Könen-Waisman, S., Zhao, Y. O., Preukschat, D., Coers, J., Boyle, J. P., Ong, Y. C., Boothroyd, J. C., Reichmann, G. and Howard, J. C. (2010). Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Cellular Microbiology 12, 939961.
Lavine, M. D. and Arrizabalaga, G. (2011). The antibiotic monensin causes cell cycle disruption of Toxoplasma gondii mediated through the DNA repair enzyme TgMSH-1. Antimicrobial Agents and Chemotherapy 55, 745755.
Liu, J., Pace, D., Dou, Z., King, T. P., Guidot, D., Li, Z. H., Carruthers, V. B. and Moreno, S. N. (2014). A vacuolar-H(+)-pyrophosphatase (TgVP1) is required for microneme secretion, host cell invasion, and extracellular survival of Toxoplasma gondii . Molecular Microbiology 93, 698712.
Luo, S., Marchesini, N., Moreno, S. N. and Docampo, R. (1999). A plant-like vacuolar H(+)-pyrophosphatase in Plasmodium falciparum . FEBS Letters 460, 217220.
Mavin, S., Joss, A., Ball, J. and Ho-Yen, D. O. (2004). Do Toxoplasma gondii RH strain tachyzoites evolve during continuous passage?. Journal of Clinical Pathology 57, 609611.
McFarland, M. M., Zach, S. J., Wang, X., Potluri, L. P., Neville, A. J., Vennerstrom, J. L. and Davis, P. H. (2016). A review of experimental compounds demonstrating anti-Toxoplasma activity. Antimicrobial Agents and Chemotherapy 20, 70177034.
Meissner, M., Reiss, M., Viebig, N., Carruthers, V. B., Toursel, C., Tomavo, S., Ajioka, J. W. and Soldati, D. (2002). A family of transmembrane microneme proteins of Toxoplasma gondii contain EGF-like domains and function as escorters. Journal of Cell Science 115, 563574.
Mercier, C. and Cesbron-Delauw, M. F. (2015). Toxoplasma secretory granules: one population or more?. Trends in Parasitology 31, 6071.
Mondragón, R. and Frixione, E. (1996). Ca (2+)-dependence of conoid extrusion in Toxoplasma gondii tachyzoites. Journal of Eukaryotic Microbiology 43, 120127.
Ong, S. E. and Mann, M. (2005). Mass spectrometry-based proteomics turns quantitative. Nature Chemical Biology 1, 252262.
Peek, H. W. and Landman, W. J. M. (2003). Resistance to anticoccidial drugs of Dutch avian Eimeria spp. field isolates originating from 1996, 1999 and 2001. Avian Pathology 32, 391401.
Pittman, K. J., Aliota, M. T. and Knoll, L. J. (2014). Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genomics 15, 806.
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. Available online at http://www.R-project.org/.
Rabenau, K. E., Sohrabi, A., Tripathy, A., Reitter, C., Ajioka, J. W., Tomley, F. M. and Carruthers, V. B. (2001). TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein TgMIC2. Molecular Microbiology 41, 537547.
Ricketts, A. P. and Pfefferkorn, E. R. (1993). Toxoplasma gondii: susceptibility and development of resistance to anticoccidial drugs in vitro . Antimicrobial Agents and Chemotherapy 37, 23582363.
Roiko, M. S. and Carruthers, V. B. (2013) Functional dissection of Toxoplasma gondii perforin-like protein 1 reveals a dual domain mode of membrane binding for cytolysis and parasite egress. The Journal of Biological Chemistry 288, 87128725.
Schmidt, J., Kliemt, S., Preissler, C., Moeller, S., von Bergen, M., Hempel, U. and Kalkhof, S. (2016). Osteoblast-released matrix vesicles, regulation of activity and composition by sulfated and non-sulfated glycosaminoglycans. Molecular and Cellular Proteomics 15, 558572.
Smith, S. S., Pfluger, S. L., Hjort, E., McArthur, A. G. and Hager, K. M. (2007). Molecular evolution of the vesicle coat component betaCOP in Toxoplasma gondii . Molecular Phylogenetics and Evolution 44, 12841294.
Song, H. O., Ahn, M. H., Ryu, J. S., Min, D. Y., Joo, K. H. and Lee, Y. H. (2004). Influence of calcium ion on host cell invasion and intracellular replication by Toxoplasma gondii . Korean Journal of Parasitology 42, 185193.
Stephan, B., Rommel, M., Daugschies, A. and Haberkorn, A. (1997). Studies of resistance to anticoccidials in Eimeria field isolates and pure Eimeria strains. Veterinary Parasitology 69, 1929.
Takemae, H., Sugi, T., Kobayashi, K., Gong, H., Ishiwa, A., Recuenco, F., Murakoshi, F., Iwanaga, T., Inomata, A., Horimoto, T., Akshi, H. and Kato, K. (2013). Characterization of the interaction between Toxoplasma gondii rhoptry neck protein 4 and host cellular β-tubulin. Scientific Reports 13, 3199.
Tardieux, I. and Baum, J. (2016). Reassessing the mechanics of parasite motility and host-cell invasion. The Journal of Cell Biology 214, 507515.
Travier, L., Mondragon, R., Dubremetz, J. F., Musset, K., Mondragon, M., Gonzalez, S., Cesbron-Delauw, M. F. and Mercier, C. (2008). Functional domains of the Toxoplasma GRA2 protein in the formation of the membranous nanotubular network of the parasitophorous vacuole. International Journal of Parasitology 38, 757773.
Treeck, M., Sanders, J. L., Gaji, R. Y., LaFavers, K. A., Child, M. A., Arrizabalaga, G., Elias, J. E. and Boothroyd, J. C. (2014). The calcium-dependent protein kinase 3 of Toxoplasma influences basal calcium levels and functions beyond egress as revealed by quantitative phosphoproteome analysis. PLoS Pathogens 10, e1004197.
Wasmuth, J. D., Pszenny, V., Haile, S., Jansen, E. M., Gast, A. T., Sher, A., Boyle, J. P., Boulanger, M. J., Parkinson, J. and Grigg, M. E. (2012). Integrated bioinformatic and targeted deletion analyses of the SRS gene superfamily identify SRS29C as a negative regulator of Toxoplasma virulence. MBio Journal 3, pii: e00321-12.
Wu, L., Zhang, Q. X., Li, T. T., Chen, S. X. and Cao, J. P. (2009). [In vitro culture of Toxoplasma gondii tachyzoites in HFF and HeLa cells]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 27, 229231.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Parasitology
  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Thabet et al supplementary material
Thabet et al supplementary material 1

 Unknown (997 KB)
997 KB
UNKNOWN
Supplementary materials

Thabet et al supplementary material
Thabet et al supplementary material 2

 Unknown (12 KB)
12 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed