Skip to main content
    • Aa
    • Aa

Spatial parasite ecology and epidemiology: a review of methods and applications


The distributions of parasitic diseases are determined by complex factors, including many that are distributed in space. A variety of statistical methods are now readily accessible to researchers providing opportunities for describing and ultimately understanding and predicting spatial distributions. This review provides an overview of the spatial statistical methods available to parasitologists, ecologists and epidemiologists and discusses how such methods have yielded new insights into the ecology and epidemiology of infection and disease. The review is structured according to the three major branches of spatial statistics: continuous spatial variation; discrete spatial variation; and spatial point processes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Spatial parasite ecology and epidemiology: a review of methods and applications
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Spatial parasite ecology and epidemiology: a review of methods and applications
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Spatial parasite ecology and epidemiology: a review of methods and applications
      Available formats
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
*Corresponding author: Dr Rachel Pullan.
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

F. E. Alexander and P. Boyle (2001). Do cancers cluster? In Spatial Epidemiology, Methods and Applications (eds. P. Elliott , J. C. Wakefield , N. G. Best & D. J. Briggs ), pp. 302316. Oxford University Press, Oxford.

N. Alexander , R. Moyeed and J. Stander (2000). Spatial modelling of individual-level parasite counts using the negative binomial distribution. Biostatistics 1, 453463.

M. C. Almeida , R. M. Assuncao , F. A. Proietti and W. T. Caiaffa (2008). [Intra-urban dynamics of dengue epidemics in Belo Horizonte, Minas Gerais State, Brazil, 1996–2002]. Cadernos de Saúde Pública 24, 23852395.

R. M. Anderson and R. M. May (1991). Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford.

J. B. Asiimwea , P. Jehopioa , K. L. Atuhairea and A. K. Mbonye (2011). Examining small area estimation techniques for public health intervention: Lessons from application to under-5 mortality data in Uganda. Journal of Public Health Policy 32, 115.

J. Besag , J. C. York and A. Mollie (1991). Bayesian image restoration, with two applications in spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics 43, 159.

N. E. Breslow and D. G. Clayton (1993). Approximate inference in generalized linear mixed models. Journal of the American Statistics Association 88, 925.

S. Brooker (2007). Spatial epidemiology of human schistosomiasis in Africa: risk models, transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene 101, 18.

S. Brooker , N. Alexander , S. Geiger , R. A. Moyeed , J. Stander , F. Fleming , P. J. Hotez , R. Correa-Oliveira and J. Bethony (2006). Contrasting patterns in the small-scale heterogeneity of human helminth infections in urban and rural environments in Brazil. International Journal for Parasitology 36, 11431151.

S. Brooker , S. Clarke , J. K. Njagi , S. Polack , B. Mugo , B. Estambale , E. Muchiri , P. Magnussen and J. Cox (2004 a). Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Tropical Medicine & International Health 9, 757766.

S. Brooker and A. C. Clements (2009). Spatial heterogeneity of parasite co-infection: Determinants and geostatistical prediction at regional scales. International Journal for Parasitology 39, 591597.

S. Brooker , R. L. Pullan , C. W. Gitonga , R. A. Ashton , J. H. Kolaczinski , N. B. Kabatereine and R. W. Snow (2012). Epidemiology of Plasmodium-helminth coinfection in contrasting transmission settings across East Africa. Journal of Infectious Diseases 205(5), 841852.

D. J. Brus and G. B. M. Heuvelink (2007). Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138, 8695.

D. A. Bundy , M. S. Wong , L. L. Lewis and J. Horton (1990). Control of geohelminths by delivery of targeted chemotherapy through schools. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 115120.

A. L. Cançado , A. R. Duarte , L. H. Duczmal , S. J. Ferreira , C. M. Fonseca and E. C. Gontijo (2010). Penalized likelihood and multi-objective spatial scans for the detection and inference of irregular clusters. International Journal of Health Geographics 9, 55.

D. G. Clayton and J. M. Kaldor (1987). Empirical Bayes estimates of age-standardised relative risks for use in disease mapping. Biometrics 43, 671681.

A. C. Clements , S. Firth , R. Dembele , A. Garba , A. Toure , M. Sacko , A. Landoure , E. Bosque-Oliva , A. G. Barnett , S. Brooker and A. Fenwick (2009 b). Use of Bayesian geostatistical prediction to estimate local variations in Schistosoma haematobium infection in West Africa. Bulletin of the World Health Organization 87, 921929.

A. C. Clements , A. Garba , M. Sacko , S. Toure , R. Dembele , A. Landoure , E. Bosque-Oliva , A. F. Gabrielli and A. Fenwick (2008 a). Mapping the probability of schistosomiasis and associated uncertainty, West Africa. Emerging Infectious Diseases 14, 16291632.

A. C. A. Clements , S. Brooker , U. Nyandindi , A. Fenwick and L. Blair (2008 b). Bayesian spatial analysis of a national urinary schistosomiasis questionnaire to assist geographic targeting of schistosomiasis control in Tanzania, East Africa. International Journal for Parasitology 38, 401415.

C. M. Crainiceanu , R. Ruppert and M. P. Wand (2005). Bayesian analysis for penalised spline regression using WinBUGS. Journal of Statistical Software 14, 124.

J. J. de Gruijter , D. J. Brus , M. F. P. Bierkens and M. Knotters (2006). Sampling for Natural Resource Monitoring. Springer-Verlag, Berlin.

P. J. Diggle (1990). A point process modeling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point. Journal of the Royal Statistical Society (Series A) 153, 349362.

P. J. Diggle (2001). Overview of statistical methods for disease mapping and its relationship to cluster detection. In Spatial Epidemiology (eds. P. Elliot , J. Wakefield , N. Best & D. Briggs ), Oxford University Press, Oxford, UK.

P. J. Diggle (2004). Spatial Statistics in the Biomedical Sciences. In GIS and Spatial Analysis in Veterinary Science (eds. P. A. Durr & A. C. Gatrell ), CABI Publishing, Wallingford, UK.

D. Engels and L. Savioli (2006). Reconsidering the underestimated burden caused by neglected tropical diseases. Trends in Parasitology 22, 363366.

A. Farnert (2008). Plasmodium falciparum population dynamics: only snapshots in time? Trends in Parasitology 24, 340344.

P. W. Gething , A. P. Patil and S. I. Hay (2010). Quantifying aggregated uncertainty in Plasmodium falciparum malaria prevalence and populations at risk via efficient space-time geostatistical joint simulations. PloS Computational Biology 6(4), e1000724.

C. Gitonga , P. Karanja , J. Kihara , M. Mwanje , E. Juma , R. Snow , A. Noor and S. Brooker (2010). Implementing school malaria surveys in Kenya: towards a national surveillance system. Malaria Journal 9, 306.

P. Goovaerts (2001). Geostatistical modelling of uncertainty in soil science. Geoderma 103, 326.

S. I. Hay , J. A. Omumbo , M. H. Craig and R. W. Snow (2000). Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. Advances in Parasitology 47, 173215.

V. Isham (2010). Spatial point process models. In Handbook of Spatial Statistics (eds. A. E. Gelfand , P. J. Diggle , M. Fuentes & P. Guttorp ), pp. 283298. Chapman & Hall/CRC Press, Boca Raton, USA.

I. Jung , M. Kulldorff and A. C. Klassen (2007). A spatial scan statistic for ordinal data. Statistics in Medicine 26, 15941607.

I. Jung , M. Kulldorff and O. J. Richard (2010). A spatial scan statistic for multinomial data. Statistics in Medicine 29, 19101918.

L. N. Kazembe , C. C. Appleton and I. Kleinschmidt (2007). Geographical disparities in core population coverage indicators for roll back malaria in Malawi. International Journal of Equity in Health 6, 5.

H.-M. Kim , B. K. Mallick and C. C. Holmes (2005). Analyzing nonstationary spatial data using piecewise Gaussian processes. Journal of the American Statistics Association 100, 653668.

I. Kleinschmidt , B. Sharp , I. Mueller and P. Vounatsou (2002). Rise in malaria incidence rates in South Africa: A small-area spatial analysis of variation in time trends. American Journal of Epidemiology 155, 257264.

M. Kulldorff and N. Nagarwalla (1995). Spatial disease clusters: Detection and inference. Statistics in Medicine 14, 799819.

I. H. Langford , A. H. Leyland , J. Rasbash and H. Goldstein (1999). Multilevel modelling of the geographical distributions of diseases. Journal of the Royal Statistics Society C 48, 253268.

A. B. Lawson (2006). Statistical Methods in Spatial Epidemiology. John Wiley, Chichester, UK.

M. Z. Levy , V. Kawai , N. M. Bowman , L. A. Waller , L. Cabrera , V. V. Pinedo-Cancino , A. E. Seitz , F. J. Steurer , J. G. Cornejo del Carpio , E. Cordova-Benzaquen , J. H. Maguire , R. H. Gilman and C. Bern (2007). Targeted screening strategies to detect Trypanasoma cruzi infection in children. PLoS Neglected Tropical Diseases 1, e103.

P. S. Levy and S. Lemeshow (2008). Sampling of Populations: Methods and Applications. Wiley-Blackwell, Oxford.

V. Machault , C. Vignolles , F. Borchi , P. Vounatsou , F. Pages , S. Briolant , J. P. Lacaux and C. Rogier (2011). The use of remotely sensed environmental data in the study of malaria. Geospatial Health 5, 151168.

E. Mathieu , A. N. Direny , M. B. de Rochars , T. G. Streit , D. G. Addis and P. J. Lammie (2006). Participation in three consecutive mass drug administrations in Leogane, Haiti. Tropical Medicine and International Health 11, 862868.

S. J. Melles , G. B. M. Heuvelink , C. J. W. Twenhofel , A. van Dijk , P. H. Hiemstra , O. Baume and U. Stohlker (2011). Optimizing the spatial pattern of networks for monitoring radioactive releases. Computers and Geosciences 37, 280288.

R. L. Prentice and L. Sheppard (1995). Aggregate data studies of disease risk factors. Biometrika 82, 113125.

R. L. Pullan , N. Kabatereine , H. Bukirwa , S. G. Staedke and S. Brooker (2011 b). Heterogeneities, determinants and consequences of co-infection with Plasmodium malaria and hookworm: a spatial Bayesian analysis of a population study in Uganda. Journal of Infectious Diseases 203, 406417.

R. L. Pullan , N. Kabatereine , R. J. Quinnell and S. Brooker (2010). Spatial and genetic epidemiology of hookworm in a rural Ugandan community. PLoS Neglected Tropical Diseases 4, e713.

G. Raso , P. Vounatsou , B. H. Singer , E. K. N'Goran , M. Tanner and J. Utzinger (2006 b). An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. Proceedings of the National Academy of Sciences, USA 103, 69346939.

H. Reid , U. Haque , A. C. A. Clements , A. J. Tatem , A. Vallely , A. Syed Masud , A. Islam and R. Haque (2010 a). Mapping malaria risk in Bangladesh using Bayesian geostatistical models. American Journal of Tropical Medicine and Hygiene 83, 861867.

S. Richardson and N. Best (2003). Bayesian hierarchical models in ecological studies of health-environment effects. Environmetrics 14, 129147.

C. Robertson , K. Sawford , S. L. Daniel , T. A. Nelson and C. Stephen (2010 b). Mobile phone-based infectious disease surveillance system, Sri Lanka. Emerging Infectious Diseases 16, 15241531.

A. Schriefer , L. H. Guimarães , P. R. L. Machado , M. Lessa , H. A. Lessa , E. Lago , G. Ritt , A. Góes-Neto , A. L. F. Schriefer , L. W. Riley and E. M. Carvalho (2009). Geographical clustering of leishmaniasis in Northeastern Brazil. Emerging Infectious Diseases 15, 871876.

R. J. Soares Magalhães , A. G. Barnett and A. C. Clements (2011 a). Geographic analysis of the role of water supply and sanitation in the risk of helminth infections of children in West Africa. Proceedings of the National Academy of Sciences, USA 108, 2008420089.

A. Stein and C. Ettema (2003). An overview of spatial sampling procedures and experimental design of spatial studies for ecosystem comparisons. Agriculture, Ecosystems and Environment 94, 3147.

H. J. W. Sturrock , P. W. Gething , A. C. A. Clements and S. Brooker (2010). Optimal survey designs for targeting chemotherapy against soil-transmitted helminths: effect of spatial heterogeneity and cost-efficiency of sampling. American Journal of Tropical Medicine and Hygiene 82, 10791087.

T. Tango and K. Takahashi (2005). A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics 4, 11.

H. J. W. Sturrock , P. W. Gething , R. Ashton , J. H. Kolaczinski , N. B. Kabatereine and S. Brooker (2011). Planning schistosomiasis control: investigation of alternative sampling strategies for Schistosoma mansoni to target mass drug administration of praziquantel in East Africa. International Health 3, 165175.

W. Tobler (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography 46, 234240.

P. Vanamail , K. D. Ramaiah , S. Subramanian , S. P. Pani , J. Yuvaraj and P. K. Das (2005). Patterns of community compliance with spaced, single-dose, mass administrations of diethylcarbamazine or ivermectin, for the elimination of lymphatic filariasis from rural areas of southern India. Annals of Tropical Medicine and Parasitology 99, 237242.

J. Wakefield and R. Salway (2001). A statistical framework for ecological and aggregate studies. Journal of the Royal Statistics Society (Series A) 164, 119137.

L. Waller and C. A. Gotway (2004). Applied Spatial Statistics for Public Health Data. John Wiley & Sons, Hoboken, USA.

C. H. Washington , J. Radday , T. G. Streit , H. A. Boyd , M. J. Beach , D. G. Addiss , R. Lovince , M. C. Lovegrove , J. G. Lafontant , P. J. Lammie and A. W. Hightower (2004). Spatial clustering of filarial transmission before and after a Mass Drug Administration in a setting of low infection prevalence. Filaria Journal 3, 3.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 19
Total number of PDF views: 348 *
Loading metrics...

Abstract views

Total abstract views: 272 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.