Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-12T17:55:33.580Z Has data issue: false hasContentIssue false

Species-specific probes for the identification of the African tsetse-transmitted trypanosomes

Published online by Cambridge University Press:  02 June 2009

W. GIBSON*
Affiliation:
School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
*
*Corresponding author. Tel: 44 (0) 117 928 8249. Fax: 44 (0) 117 331 7985. E-mail: w.gibson@bris.ac.uk

Summary

The first step in studying the epidemiology of a disease is the accurate identification of the pathogen. Traditional reliance on morphological identification has given way to the use of molecular methods for the detection and identification of pathogens, greatly improving our understanding of epidemiology. For the African tsetse-transmitted trypanosomes, the growth of PCR methods for identification of trypanosomes has led to increased appreciation of trypanosome genetic diversity and discovery of hitherto unknown trypanosome species, as well as greater knowledge about the number and type of trypanosome infections circulating in mammalian hosts and vectors. Sequence data and phylogenetic analysis have provided quantitative information on the relatedness of different trypanosome species and allowed the new trypanosome genotypes discovered through the use of species identification methods in the field to be accurately placed in the phylogenetic tree.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is dedicated to my Ph.D. supervisor and mentor, David Godfrey, 1929–2007.

References

REFERENCES

Adams, E. R., Hamilton, P. B., Malele, I. I. and Gibson, W. (2008). The identification, diversity and prevalence of trypanosomes in field caught tsetse in Tanzania using ITS-1 primers and fluorescent fragment length barcoding. Infection, Genetics and Evolution 8, 439444.Google Scholar
Adams, E. R., Malele, I. I., Msangi, A. R. and Gibson, W. C. (2006). Trypanosome identification in wild tsetse populations in Tanzania using generic primers to amplify the ribosomal RNA ITS-1 region. Acta Tropica 100, 103109.CrossRefGoogle ScholarPubMed
Bromidge, T., Gibson, W., Hudson, K. M. and Dukes, P. (1993). Identification of Trypanosoma brucei gambiense by PCR amplification of variant surface glycoprotein genes. Acta Tropica 53, 107119.CrossRefGoogle ScholarPubMed
Cox, A., Tilley, A., McOdimba, F., Fyfe, J., Eisler, M., Hide, G. and Welburn, S. (2005). A PCR based assay for detection and differentiation of African trypanosome species in blood. Experimental Parasitology 111, 2429.Google Scholar
De Greef, C., Imberechts, H., Matthyssons, G., Van Meirvenne, N. and Hamers, R. (1989). A gene expressed only in serum-resistant variants of Trypanosoma brucei rhodesiense. Molecular and Biochemical Parasitology 36, 169176.CrossRefGoogle ScholarPubMed
Desquesnes, M., McLaughlin, G., Zoungrana, A. and Davila, A. M. R. (2001). Detection and identification of Trypanosoma of African livestock through a single PCR based on internal transcribed spacer 1 of rDNA. International Journal for Parasitology 31, 610614.Google Scholar
Dickin, S. K. and Gibson, W. C. (1989). Hybridisation with a repetitive DNA probe reveals the presence of small chromosomes in Trypanosoma vivax. Molecular and Biochemical Parasitology 33, 135142.CrossRefGoogle ScholarPubMed
Gashumba, J. K. (1986). Two enzymically distinct groups of Trypanosoma congolense. Research in Veterinary Science, 40, 411412.CrossRefGoogle Scholar
Gashumba, J. K., Baker, R. D. and Godfrey, D. G. (1988). Trypanosoma congolense: the distribution of enzymic variants in East and West Africa. Parasitology 96, 475486.Google Scholar
Gibson, W., Backhouse, T. and Griffiths, A. (2002). The human serum resistance associated gene is ubiquitous and conserved in Trypanosoma brucei rhodesiense throughout East Africa. Infection, Genetics and Evolution 1, 207214.Google Scholar
Gibson, W. C., Dukes, P. and Gashumba, J. K. (1988). Species-specific DNA probes for the identification of trypanosomes in tsetse. Parasitology 97, 6373.Google Scholar
Gibson, W. C., Stevens, J. R., Mwendia, C. M. T., Makumi, J. N., Ngotho, J. M. and Ndung'u, J. M. (2001). Unravelling the phylogenetic relationships of African trypanosomes of suids. Parasitology 122, 625631.CrossRefGoogle ScholarPubMed
Hamilton, P. B., Adams, E. R., Malele, I. I. and Gibson, W. C. (2008). A novel high throughput technique for species identification reveals a new species of tsetse-transmitted trypanosome related to the Trypanosoma brucei subgenus, Trypanozoon Infection, Genetics and Evolution 8, 2633.Google Scholar
Knowles, G., Betschart, B., Kukla, B. A., Scott, J. R. and Majiwa, P. A. O. (1988). Genetically discrete populations of Trypanosoma congolense from livestock on the Kenyan Coast. Parasitology 96, 461474.Google Scholar
Kukla, B. A., Majiwa, P. A. O., Young, C. J., Moloo, S. K. and Ole-Moiyoi, O. K. (1987). Use of species-specific DNA probes for the detection and identification of trypanosome infections in tsetse flies. Parasitology 95, 126.Google Scholar
Lehane, M. J., Msangi, A. R., Whitaker, C. J. and Lehane, S. M. (2000). Grouping of trypanosome species in mixed infections in Glossina pallidipes. Parasitology 120, 583592.Google Scholar
Lloyd, L. and Johnson, W. B. (1924). The trypanosome infections of tsetse flies in northern Nigeria and a new method of estimation. Bulletin of Entomological Research 14, 265288.Google Scholar
Majiwa, P. A. O., Maina, M., Waitumbi, J. N., Mihok, S. and Zweygarth, E. (1993). Trypanosoma (Nannomonas) congolense: molecular characterisation of a new genotype from Tsavo, Kenya. Parasitology 106, 151162.Google Scholar
Majiwa, P. A. O. and Otieno, L. H. (1990). Recombinant DNA probes reveal simultaneous infection of tsetse flies with different trypanosome species. Molecular and Biochemical Parasitology 40, 245254.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Thatthi, R., Moloo, S. K., Nyeko, J. H. P., Otieno, L. H. and Maloo, S. (1994). Detection of trypanosome infections in the saliva of tsetse flies and buffy coat samples from antigenaemic but aparasitaemic cattle. Parasitology 108, 313322.Google Scholar
Majiwa, P. A. O. and Webster, P. (1987). A repetitive DNA sequence distinguishes Trypanosoma simiae from T. congolense. Parasitology 95, 543598.Google Scholar
Malele, I., Craske, L., Knight, C., Ferris, V., Njiru, Z., Hamilton, P., Lehane, S., Lehane, M. and Gibson, W. (2003). Identification of new trypanosome species from wild tsetse flies in Tanzania. Infection, Genetics and Evolution 3, 271279.CrossRefGoogle ScholarPubMed
Masake, R. A., Majiwa, P. A. O., Moloo, S. K., Makau, J. M., Njuguna, J. T., Maina, M., Kabata, J., Olemoiyoi, O. K. and Nantulya, V. M. (1997). Sensitive and specific detection of Trypanosoma vivax using the polymerase chain reaction. Experimental Parasitology 85, 193205.Google Scholar
Masake, R. A., Nantulya, V. M., Pelle, R., Makau, J. M., Gathuo, H. and Ole-Moiyoi, O. K. (1994). A species-specific antigen of Trypanosoma (Duttonella) vivax detectable in the course of infection is encoded by a differentially expressed tandemly reiterated gene. Molecular and Biochemical Parasitology 64, 207218.CrossRefGoogle ScholarPubMed
Masiga, D. K., McNamara, J. J., Laveissiere, C., Truc, P. and Gibson, W. C. (1996). A high prevalence of mixed trypanosome infections in tsetse flies in Sinfra, Cote d'Ivoire, detected by DNA amplification. Parasitology 112, 7580.Google Scholar
Masiga, D. K., Smyth, A. J., Hayes, P. J., Bromidge, T. J. and Gibson, W. C. (1992). Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International Journal for Parasitology 22, 909918.Google Scholar
Mathieu-Daude, F., Bicart-See, A., Bosseno, M. F., Breniere, S. F. and Tibayrenc, M. (1994). Identification of Trypanosoma brucei gambiense group I by a specific kinetoplast DNA probe. American Journal of Tropical Medicine and Hygiene 50, 1319.CrossRefGoogle Scholar
Maudlin, I. (1991). Transmission of African Trypanosomiasis: interactions among tsetse immune system, symbionts and parasites. Advances in Disease Vector Research 7, 117148.CrossRefGoogle Scholar
McNamara, J., Dukes, P., Snow, W. F. and Gibson, W. C. (1989). Use of DNA probes to identify Trypanosoma congolense and T. simiae in tsetse from The Gambia. Acta Tropica 46, 5561.Google Scholar
McNamara, J. J., Mohammed, G. and Gibson, W. C. (1994). Trypanosoma (Nannomonas) godfreyi sp. nov. from tsetse-flies in The Gambia: biological and biochemical characterization. Parasitology 109, 497509.CrossRefGoogle ScholarPubMed
Mehlitz, D., Zillmann, U., Scott, C. M. and Godfrey, D. G. (1982). Epidemiological studies on the animal reservoir of gambiense sleeping sickness. III. Characterisation of Trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmedizin und Parasitologie 33, 113118.Google Scholar
Morlais, I., Grebaut, P., Bodo, J. M., Djoha, S., Cuny, G. and Herder, S. (1998). Detection and identification of trypanosomes by polymerase chain reaction in wild tsetse flies in Cameroon. Acta Tropica 70, 109117.Google Scholar
Morlais, I., Ravel, S., Grebaut, P., Dumas, V. and Cuny, G. (2001). New molecular marker for Trypanosoma (Duttonella) vivax identification. Acta Tropica 80, 207213.Google Scholar
Moser, D. R., Cook, G. A., Ochs, D. E., Bailey, C. P., McKane, M. R. and Donelson, J. E. (1989). Detection of Trypanosoma congolense and T. brucei subspecies by DNA amplification using the polymerase chain reaction. Parasitology 99, 5766.CrossRefGoogle Scholar
Njiru, Z. K., Constantine, C. C., Guya, S., Crowther, J., Kiragu, J. M., Thompson, R. C. A. and Davila, A. (2005). The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitology Research 95, 186192.Google Scholar
Njiru, Z. K., Mikosza, A. S. J., Armstrong, T., Enyaru, J. C., Ndung'u, J. M. and Thompson, A. R. C. (2008 a). Loop-Mediated Isothermal Amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense. PLoS Neglected Tropical Diseases 2(2): e147. doi:10.1371/journal.pntd.0000147CrossRefGoogle ScholarPubMed
Njiru, Z. K., Mikosza, A. S. J., Matovu, E., Enyaru, J. C. K., Ouma, J. O., Kibona, S. N., Thompson, R. C. A. and Ndung'u, J. M. (2008 b). African trypanosomiasis: sensitive and rapid detection of the subgenus Trypanozoon by loop-mediated isothermal amplificatiion (LAMP) of parasite DNA. International Journal for Parasitology 38, 589599.CrossRefGoogle ScholarPubMed
Njiru, Z. K., Ndung'u, K., Matete, G., Ndungu, J. M. and Gibson, W. C. (2004). Detection of Trypanosoma brucei rhodesiense in animals from sleeping sickness foci in East Africa using the serum resistance associated (SRA) gene. Acta Tropica 90, 249254.CrossRefGoogle ScholarPubMed
Radwanska, M., Chamekh, M., Vanhamme, L., Claes, F., Magez, S., Magnus, E., De Baetselier, P., Buscher, P. and Pays, E. (2002 a). The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. American Journal of Tropical Medicine and Hygiene 67, 684690.Google Scholar
Radwanska, M., Claes, F., Magez, S., Magnus, E., Perez-Morga, D., Pays, E. and Buscher, P. (2002 b). Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense. American Journal of Tropical Medicine and Hygiene 67, 289295.CrossRefGoogle ScholarPubMed
Solano, P., Argiro, L., Reifenberg, J. M., Yao, Y. and Duvallet, G. (1995). Field application of the polymerase chain reaction (PCR) to the detection and characterization of trypanosomes in Glossina longipalpis (Diptera: Glossinidae) in Cote d'Ivoire. Molecular Ecology 4, 781785.Google Scholar
Thekisoe, O. M. M., Kuboki, N., Nambota, A., Fujisaki, K., Sugimoto, C., Igarashi, I., Yasuda, J. and Inoue, N. (2007). Species-specific loop-mediated isothermal amplification (LAMP) for diagnosis of trypanosomosis. Acta Tropica 102, 182189.Google Scholar
Welburn, S. C., Picozzi, K., Fevre, E. M., Coleman, P. G., Odiit, M., Carrington, M. and Maudlin, I. (2001). Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet 358, 20172019.CrossRefGoogle ScholarPubMed
Wijers, D. J. B. (1958). Factors that may influence the infection rate of Glossina palpalis with Trypanosoma gambiense. I. The age of the fly at the time of the infected feed. Annals of Tropical Medicine and Parasitology 52, 385390.CrossRefGoogle ScholarPubMed
Woolhouse, M. E. J. and Hargrove, J. W. (1998). On the interpretation of age-prevalence curves for trypanosome infections of tsetse flies. Parasitology 116, 149156.Google Scholar
Xong, V. H., Vanhamme, L., Chamekh, M., Chimfwembe, C. E., Van Den Abbeele, J., Pays, A., Van Meirvenne, N., Hamers, R., De Baetselier, P. and Pays, E. (1998). A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95, 839846.CrossRefGoogle ScholarPubMed
Young, C. J. and Godfrey, D. G. (1983). Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Annals of Tropical Medicine and Parasitology 77, 467481.CrossRefGoogle ScholarPubMed