Skip to main content
    • Aa
    • Aa

Specificity of the Toxoplasma gondii-altered behaviour to definitive versus non-definitive host predation risk

  • P. H. L. LAMBERTON (a1), C. A. DONNELLY (a2) and J. P. WEBSTER (a1)

The hypothesis that the parasite Toxoplasma gondii manipulates the behaviour of its intermediate rat host in order to increase its chance of being predated specifically by its feline definitive host, rather than a non-definitive host predator species, was tested. The impact of a range of therapeutic drugs, previously demonstrated to be effective in preventing the development of T. gondii-associated behavioural and cognitive alterations in rats, on definitive-host predator specificity was also tested. Using a Y-shaped maze design, we demonstrated that T. gondii-associated behavioural changes, apparently aimed to increase predation rate, do appear to be specific to that of the feline definitive host – there were significant and consistent differences between the (untreated) infected and uninfected rats groups where T. gondii-infected rats tended to choose the definitive host feline-predator-associated maze arm and nest-box significantly more often than a maze arm or nest-box treated with non-definitive host predator (mink) odour. Drug treatment of infected rats prevented any such host-specificity from being displayed. We discuss our results in terms of their potential implications both for T. gondii epidemiology and the evolution of parasite-altered behaviour.

Corresponding author
*Corresponding author and address for request for materials: Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College, Norfolk Place, London W2 1PG, UK. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. E. Adamec , J. Blundell and P. Burton (2005). Neural circuit changes mediating lasting brain and behavioral response to predator stress. Neuroscience and Biobehavioural Reviews 29, 12251241.

R. E. Adamec , J. Blundell and P. Burton (2006). Relationship of the predatory attack experience to neural plasticity, pCREB expression and neuroendocrine response. Neuroscience and Biobehavioural Reviews 30, 356375.

R. E. Adamec , P. Burton , T. Shallow and J. Budgell (1999). NMDA receptors mediate lasting increases in anxiety-like behaviour produced by the stress of predator exposure – implications for anxiety associated with post-traumatic stress disorder. Physiology and Behaviour 65, 723737.

M. Berdoy , J. P. Webster and D. W. Macdonald (2000). Fatal attraction in Toxoplasma-infected rats: a case of parasite manipulation of its mammalian host. Proceedings of the Royal Society of London, B 267, 267.

R. J. Blanchard , D. C. Blanchard , J. Rodgers and S. M. Weiss (1990). The characterisation and modelling of antipredator defensive behavior. Neuroscience and Biochemical Reviews 14, 463472.

R. J. Blanchard , M. Yang , C. I. Li , A. Gervacio and D. C. Blanchard (2001). Cue and context conditioning of defensive behaviors to cat odor stimuli. Neuroscience and Biobehavioural Reviews 25, 587595.

L. Buck and R. Axel (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175187.

F. Derouin , C. Piketty , C. Chastang , F. Chau , B. Rouviex and J. J. Pocidalo (1991). Anti-Toxoplasma effects of dapsone alone and combined with pyrimethamine. Antimicrobial Agents and Chemotherapy 35, 252255.

P. A. Flecknell , J. V. Roughan and R. Stewart (1999). Use of oral buprenorphine (‘buprenorphine jello’) for postoperative analgesia in rats–a clinical trial. Laboratory Animal 33, 169174.

P. M. Girard , R. Landman , C. Gaudebout , R. Olivares , A. G. Saimot , P. Jelazko , C. Gaudebout , A. Certain , F. Boue , E. Bouvet , T. Lecompte and P. Jean-Coulaud (1993). Dapsone-pyrimethamine compared with aerosolized pentamidine as primary prophylaxis against Pneumocystis carinii pneumonia and toxoplasmosis in HIV infection. The New England Journal of Medicine 328, 15141520.

P. Grostal and M. Dicke (1999). Direct and indirect cues of predation risk influence behavior and reproduction of prey: a case for acarine interactions. Behavioural Ecology 10, 422427.

C. A. Hendrie , S. M. Weiss and D. Eilam (1996). Exploration and predation models of anxiety: evidence from laboratory and wild species. Pharmacology, Biochemistry and Behavior 54, 1320.

S. Hrda , J. Votypka and P. Kodym (2000). Transient nature of Toxoplasma gondii-induced behavioural changes in mice. Journal of Parasitology 86, 657663.

S. Kapur , S. C. VanderSpek , B. A. Brownlee and J. N. Nobrega (2003). Antipsychotic dosing in preclinical models is often unrepresentative of the clinical condition – a suggested solution based on in vivo occupancy. Journal of Pharmacology and Experimental Therapeutics 305, 625631.

K. Kobayakawa , R. Kobayakawa , H. Matsumoto , Y. Oka , T. Imai , M. Ikawa , M. Okabe , T. Ikeda , S. Itohara , T. Kikusui , K. Mori and H. Sakano (2007). Innate versus learned odour processing in the mouse olfactory bulb. Nature, London 450, 503510.

J. LeDoux (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology 23, 727738.

K. N. Mouritsen and R. Poulin (2003). The mud flat anemone-cockle association: mutualism in the intertidal zone? Oecologia 135, 131137.

L. G. Staples , G. E. Hunt , J. L. Cornish and I. S. McGregor (2005). Neural activation during cat odor-induced conditioned fear and ‘trial 2’ fear in rats. Neuroscience and Biobehavioural Reviews 29, 12651277.

E. F. Torrey and R. H. Yolken (2003). Toxoplasma gondii and schizophrenia. Emerging Infectious Diseases 9, 13751380.

A. Vyas , K. Seon-Kyeong , N. Giacomini , J. C. Boothroyd and R. M. Sapolsky (2007 a). Behavioural changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odours. Proceedings of the National Academy of Sciences, USA 104, 64426447.

A. Vyas , S. K. Kim and R. M. Sapolsky (2007 b). The effects of Toxoplasma infection on rodent behavior are dependent on dose of the stimulus. Neuroscience 148, 342348.

J. P. Webster (2001). Rats, cats, people and parasites: the impact of latent toxoplasmosis on behaviour. Microbes and Infection 3, 19.

J. P. Webster (2007). The impact of Toxoplasma gondii on animal behaviour: playing cat and mouse. Schizophrenia Bulletin 33, 752756.

J. P. Webster , P. H. L. Lamberton , C. A. Donnelly and E. F. Torrey (2006). Parasites as causative agents of human affective disorders? The impact of anti-psychotic and anti-protozoan medication on Toxoplasma gondii's ability to alter host behaviour. Proceedings of the Royal Society of London, B 273, 10231030.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 9
Total number of PDF views: 70 *
Loading metrics...

Abstract views

Total abstract views: 327 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th June 2017. This data will be updated every 24 hours.