Skip to main content
    • Aa
    • Aa

Suitability of loci for multiple-locus variable-number of tandem-repeats analysis of Cryptosporidium parvum for inter-laboratory surveillance and outbreak investigations


Cryptosporidium parvum is the major cause of livestock and zoonotically-acquired human cryptosporidiosis. The ability to track sources of contamination and routes of transmission by further differentiation of isolates would assist risk assessment and outbreak investigations. Multiple-locus variable-number of tandem-repeats (VNTR) analysis provides a means for rapid characterization by fragment sizing and estimation of copy numbers, but structured, harmonized development has been lacking for Cryptosporidium spp. To investigate potential for application in C. parvum surveillance and outbreak investigations, we studied nine commonly used VNTR loci (MSA, MSD, MSF, MM5, MM18, MM19, MS9-Mallon, GP60 and TP14) for chromosome distribution, repeat unit length and heterogeneity, and flanking region proximity and conservation. To investigate performance in vitro, we compared these loci in 14 C. parvum samples by capillary electrophoresis in three laboratories. We found that many loci did not contain simple repeat units but were more complex, hindering calculations of repeat unit copy number for standardized reporting nomenclature. However, sequenced reference DNA enabled reproducible fragment sizing and inter-laboratory allele assignation based on size normalized to that of the sequenced fragments by both single round and nested polymerase chain reactions. Additional Cryptosporidium loci need to be identified and validated for robust inter-laboratory surveillance and outbreak investigations.

Corresponding author
* Corresponding author: Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea SA2 8QA, UK. Tel. +44 1792 285341. Fax +44 1792 202320. E-mail:
Hide All
AlvesM., XiaoL., SulaimanI., LalA. A., MatosO. and AntunesF. (2003). Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. Journal of Clinical Microbioogy 41, 27442747.
AnderssonS., SikoraP., KarlbergM. L., Winiecka-KrusnellJ., AlmE., BeserJ. and ArrighiR. B. (2015). It's a dirty job – A robust method for the purification and de novo genome assembly of Cryptosporidium from clinical material. Journal of Microbiological Methods 113, 1012.
BrookE. J., HartC. A., FrenchN. P. and ChristleyR. M. (2009). Molecular epidemiology of Cryptosporidium subtypes in cattle in England. The Veterinary Journal 179, 378382.
CaccioS. M., de WaeleV., WidmerG. (2015). Geographical segregation of Cryptosporidium parvum multilocus genotypes in Europe. Infection, Genetics and Evolution 31, 245249.
CasemoreD. (1990). Epidemiological aspects of human cryptosporidiosis. Epidemiology and Infection 104, 128.
ChalmersR. M. and GilesM. (2010). Zoonotic cryptosporidiosis. Journal of Applied Microbiology 109, 14871497.
ChalmersR. M. and KatzerF. (2013). Looking for Cryptosporidium: the application of advances in detection and diagnosis. Trends in Parasitology 29, 237251.
ChalmersR. M., ElwinK., ThomasA. L., GuyE. C. and MasonB. (2009). Long-term Cryptosporidium typing reveals the aetiology and species-specific epidemiology of human cryptosporidiosis in England and Wales, 2000 to 2003. Eurosurveillance 14, 15.
ChalmersR. M., SmithR., ElwinK., Clifton-HadleyF. A., GilesM. (2011). Epidemiology of anthroponotic and zoonotic human cryptosporidiosis in England and Wales, 2004 to 2006. Epidemiology and Infection 139, 700712.
DallmanT. J., ByrneL., AshtonP. M., CowleyL.A., PerryN. T., AdakG., PetrovskaL., EllisR. J., ElsonR., UnderwoodA., GreenJ., HanageW. P., JenkinsC., GrantK. and WainJ. (2015). Whole genome sequencing for national surveillance of Shiga toxin-producing Escherichia coli O157. Clinical Infectious Diseases 61, 305312.
DíazP., HadfieldS. J., QuílezJ., SoilánM., LópezC., PanaderoR., Díez-BañosP., MorrondoP. and ChalmersR. M. (2012). Assessment of three methods for multilocus fragment typing of Cryptosporidium parvum from domestic ruminants in northwest Spain. Veterinary Parasitology 186, 188195.
DrumoR., WidmerG., MorrisonL. J., TaitA., GrelloniV., D'AvinoN., PozioE. and CaccioS. M. (2012). Evidence of host associated populations of Cryptosporidium parvum in Italy. Applied and Environmental Microbiology 78, 35233529.
FarthingM. J. G. (2000). Clinical aspects of human cryptosporidiosis. In Cryptosporidiosis and Microsporidiosis. (ed. PetryF.), Contributions in Microbiology, vol. 6, pp. 5074, Karger, Basel.
FengY., TorresE., LiN., WangL., BowmanD. and XiaoL. (2013). Population genetic characterisation of dominant Cryptosporidium parvum subtype IIaA15G2R1. Emerging Infectious Diseases 16, 895896.
GateiW., HartC. A., GilmanR. H., DasP., CamaV. and XiaoL. (2006). Development of a multilocus sequence typing tool for Cryptosporidium hominis. Journal of Eukaryotic Microbiology 53 (Suppl. 1), S43S48.
HadfieldS. J., RobinsonG., ElwinK. and ChalmersR. M. (2011). Detection and differentiation of Cryptosporidium spp. in human clinical samples by use of real-time PCR. Journal of Clinical Microbiology 49, 918924.
HadfieldS. J., PachebatJ. A., SwainM. T., RobinsonG., CameronS. J., AlexanderJ., HegartyM. J., ElwinK. and ChalmersR. M. (2015). Generation of whole genome sequences of new Cryptosporidium hominis and Cryptosporidium parvum isolates directly from stool samples. BMC Genomics 16, 650.
HotchkissE. J., GilrayJ. A., BrennanM. L., ChristleyR. M., MorrisonL. J., JonssonN. N., InnesE. A. and KatzerF. (2015). Development of a framework for genotyping bovine-derived Cryptosporidium parvum, using a multilocus fragment typing tool. Parasites and Vectors 8, 500.
LarssonJ. T., TorpdahlM., PetersenR. F., SørensenG., LindstedtB. A., NielsenE. M. (2009). Development of a new nomenclature for Salmonella Typhimurium multilocus variable number of tandem repeats analysis (MLVA). Euro Surveillance 14. pii=19174.
NadonC. A., TreesE., NgL. K., Møller NielsenE., ReimerA., MaxwellN., KubotaK. A. and Gerner-SmidtP., the MLVA Harmonization Working Group (2013). Development and application of MLVA methods as a tool for inter-laboratory surveillance. Euro Surveillance 18. pii=20565.
PalmD., JohanssonK., OzinA., FriedrichA. W., GrundmannH., LarssonJ. T. and StruelensM. J. (2012). Molecular epidemiology of human pathogens: how to translate breakthroughs into public health practice, Stockholm, November 2011. Euro Surveillance 17.
PasqualottoA. C., DenningmD. W., AndersonM. J. (2007). A cautionary tale: lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. Journal of Clinical Microbiology 45, 522528.
PritchardG. C., MarshallJ. A., GilesM., ChalmersR. M. and MarshallR. M. (2007). Cryptosporidium parvum infection in orphan lambs on a farm open to the public. Veterinary Record 161, 1114.
RobertsonL., BjörkmanC., AxénC. and FayerR. (2014). Cryptosporidiosis in Farmed Animals. In Cryptosporidium: parasite and disease (ed. CaccioS. M. and WidmerG.), pp. 149236. Springer Wien Heidelberg, New York, Dordrecht, London.
RobinsonG. and ChalmersR. M. (2012). Assessment of polymorphic genetic markers for multi-locus typing of Cryptosporidium parvum and Cryptosporidium hominis . Experimental Parasitology 132, 200215.
StrongW. B., GutJ. and NelsonR. G. (2000). Cloning and sequence analysis of a highly polymorphic Cryptosporidium parvum gene encoding a 60-kilodalton glycoprotein and characterization of its 15- and 45-kilodalton zoite surface antigen products. Infection and Immunity 68, 41174134.
StruelensM. J. (1996). Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clinical Microbiology and Infection 2, 211.
SulaimanI. M., HiraP. R., ZhouL., Al-AliF. M., Al-ShelahiF. A., ShweikiH. M., IqbalJ., KhalidN. and XiaoL. (2005). Unique endemicity of cryptosporidiosis in children in Kuwait. Journal of Clinical Microbiology 43, 28052809.
TanriverdiS., MarkovicsA., ArslanM. O., ItikA., ShkapV. and WidmerG. (2006). Emergence of distinct genotypes of Cryptosporidium parvum in structured host populations. Applied and Environmental Microbiology 72, 25072513.
van BelkumA., TassiosP. T., DijkshoornL., HaeggmanS., CooksonB., FryN. K., FussingV., GreenJ., FeilE., Gerner-SmidtP., BrisseS. and StruelensM. (2007). Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clinical Microbiology and Infection 13 (Suppl. 3), 146.
WellsB., ShawH., HotchkissE., GilrayJ., AytonR., GreenJ., KatzerF., WellsA. and InnesE. (2015). Prevalence, species identification and genotyping Cryptosporidium from livestock and deer in a catchment in the Cairngorms with a history of a contaminated public water supply. Parasites and Vectors 8, 66.
WidmerG. and SullivanS. (2012). Genomics and population biology of Cryptosporidium species. Parasite Immunology 34, 6171.
WidmerG. and CacciòS. M. (2015). A comparison of sequence and length polymorphism for genotyping Cryptosporidium isolates. Parasitology 142, 10801085.
XiaoL. and RyanU. (2008). Molecular epidemiology. In Cryptosporidium and Cryptosporidiosis. (ed. FayerR. and XiaoL.), pp. 119163. CRC Press, Boca Raton.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 7
Total number of PDF views: 73 *
Loading metrics...

Abstract views

Total abstract views: 381 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.