Skip to main content
    • Aa
    • Aa

Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays

  • G. SRIVIDYA (a1), R. DUNCAN (a2), P. SHARMA (a1), B. V. S. RAJU (a1), H. L. NAKHASI (a2) and P. SALOTRA (a1)...

Leishmania donovani causes visceral disease (kala-azar), a major health problem throughout the tropics with 500 000 new cases every year. Leishmania differentiates from the promastigote to the amastigote form to establish infection in a mammalian host. To understand the process of differentiation, we assessed the global variation in gene expression in promastigotes, an intermediate stage of differentiation (PA24) and axenic amastigotes in culture using an L. donovani genomic microarray with 4224 clones printed in triplicate. During an intermediate stage of differentiation 24 h after shifting the promastigotes into amastigotes (PA24), there were 41 (∼1%) clones with expression ⩾2·0-fold higher than promastigotes, whereas in terminally differentiated amastigotes there were 130 (∼3%) such clones. Of particular interest were certain genes that exhibited a transient increase or decrease in expression at the PA24 stage. Kinases showed a transient increase, and surface molecules, PSA and amino acid permease, were prominent clones among those showing a brief decrease at the PA24 stage. The microarray results have been validated using Northern blots or RT-PCR. In summary, our results provide important clues about the genes involved in the differentiation process of L. donovani that may contribute to virulence.

Corresponding author
*Corresponding author: Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delh-110029, India. Tel: +91 11 26166124. Fax: +91 11 26166124. E-mail:
Hide All
Akopyants N. S., Clifton S. W., Martin J., Pape D., Wylie T., Li L., Kissinger J. C., Roos D. S. and Beverley S. M. (2001). A survey of the Leishmania major Friedlin strain V1 genome by shotgun sequencing: a resource for DNA microarrays and expression profiling. Molecular and Biochemical Parasitology 113, 337340.
Akopyants N. S., Matlibs R. S., Bukanova E. N., Smeds M. R., Brownstein B. H., Stormo G. D. and Beverley S. M. (2004). Expression profiling using random genomic DNA microarray identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Molecular and Biochemical Parasitology 136, 7186.
Almeida R., Gilmartin B. J., McCann S. H., Norrish A., Ivens A. C., Lawson D., Levick M. P., Smith D. F., Dyall S. D., Vetrie D., Freeman T. C., Coulson R. M., Sampaio I., Schneider H. and Blackwell J. M. (2004). Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Molecular and Biochemical Parasitology 136, 87100.
Beetham J. K., Donelson J. E. and Dahlin R. R. (2003). Surface glycoprotein PSA (GP46) expression during short and long-term culture of Leishmania chagasi. Molecular and Biochemical Parasitology 131, 109117.
Boucher N., Wu Y., Dumas C., Dube M., Sereno D., Breton M. and Papadopoulou B. (2002). A common mechanism of stage-regulated gene expression in Leishmania mediated by a conserved 3′-untranslated region element. Journal of Biological Chemistry 277, 1951119520.
Brandau S., Dresel A. and Clos J. (2003). High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania. The Biochemical Journal 310, 225232.
Cheadle C., Vawter M. P., Freed W. J. and Becker K. G. (2003). Analysis of microarray data using Z-score transformation. Journal of Molecular Diagnostics 5, 7381.
Coulson R. M. R. and Smith D. F. (1990). Isolation of genes showing increased or unique expression in the infective promastigotes of Leishmania major. Molecular and Biochemical Parasitology 40, 6376.
Debrabant A., Joshi M. B., Pimenta P. F. and Dwyer D. M. (2004). Generation of axenic amastigotes: their growth and cultural characteristics. International Journal for Parasitology 34, 205317.
Desjeux P. (2001). Worldwide increasing risk factors for leishmaniasis. Medical Microbiology and Immunology 190, 7779.
Duncan R., Alvarez R., Jaffe C., Wiese M., Klutch M., Shakarian A., Dwyer D. and Nakhasi H. L. (2001). Early response gene expression during differentiation of cultured Leishmania donovani. Parasitology Research 87, 897906.
Duncan R., Salotra P., Goyal N., Akopyants N., Beverley S. M. and Nakhasi H. L. (2004). The application of gene expression microarray technology to kinetoplastid research. Current Molecular Medicine 4, 611621.
Dutoya S., Gibert S., Lemercier G., Santarelli X., Baltz D., Baltz T. and Bakalara N. (2001). A novel C-terminal kinesin is essential for maintaining functional acidocalcisomes in Trypanosoma brucei. Journal of Biological Chemistry 276, 4911749124.
El-Sayed N. M., Hegde P., Quackenbush J., Melville S. E. and Donelson J. E. (2000). The African trypanosome genome. International Journal for Parasitology 30, 329345.
Erdmann M., Scholz A., Melzer I. M., Schmetz C. and Wiese M. (2006). Interacting protein kinases involved in regulation of flagellar length. Molecular Biology of the Cell 17, 20352045.
Geraldo M. V., Silber A. M., Pereira C. A. and Uliana S. R. (2005). Characterization of a developmentally regulated amino acid transporter gene from Leishmania amazonensis. FEMS Microbiology Letters 242, 275280.
Goyal N., Duncan R., Selvapandiyan A., Debrabant A., Baig M. S. and Nakhasi H. L. (2006). Cloning and characterization of angiotensin converting enzyme related dipeptidylcarboxypeptidase from Leishmania donovani. Molecular and Biochemical Parasitology 145, 147157.
Holzer R. T., McMaster W. R. and Forney J. D. (2006). Expression profiling by whole genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion derived amastigotes and axenic amastigotes in Leishmania mexicana. Molecular and Biochemical Parasitology 146, 198218.
Imai K., Mimori T., Kawai M. and Koga H. (2005). Microarray analysis of host gene-expression during intracellular nests formation of Trypanosoma cruzi amastigotes. Microbiology and Immunology 49, 623631.
Ivens A. C., Peacock C. S., Worthey E. A., Murphy L., Aggarwal G., Berriman M., Sisk E., Rajandream M. A., Adlem E., Aert R., Anupama A., Apostolou Z., Attipoe P., Bason N., Bauser C., Beck A., Beverley S. M., Bianchettin G., Borzym K., Bothe G., Bruschi C. V., Collins M., Cadag E., Ciarloni L., Clayton C., Coulson R. M., Cronin A., Cruz A. K., Davies R. M., De Gaudenzi J., Dobson D. E., Duesterhoeft A., Fazelina G., Fosker N., Frasch A. C., Fraser A., Fuchs M., Gabel C., Goble A., Goffeau A., Harris D., Hertz-Fowler C., Hilbert H., Horn D., Huang Y., Klages S., Knights A., Kube M., Larke N., Litvin L., Lord A., Louie T., Marra M., Masuy D., Matthews S. K., Michaeli S., Mottram J. C., Muller-Auer S., Munden H., Nelson S., Norbertczak H., Oliver K., O'neil S., Pentony M., Pohl T. M., Price C., Purnelle B., Quail M. A., Rabbinowitsch E., Reinhardt R., Rieger M., Rinta J., Robben J., Robertson L., Ruiz J. C., Rutter S., Saunders D., Schafer M., Schein J., Schwartz D. C., Seeger K., Seyler A., Sharp S., Shin H., Sivam D., Squares R., Squares S., Tosato V., Vogt C., Volckaert G., Wambutt R., Warren T., Wedler H., Woodward J., Zhou S., Zimmermann W., Smith D. F., Blackwell J. M., Stuart K. D., Barrell B. and Myler P. J. (2005). The genome of the kinetoplastid parasite Leishmania major. Science 309, 436442.
Joshi M., Dwyer D. M. and Nakhasi H. L. (1993). Cloning and characterization of differentially expressed genes from in vitro grown ‘amastigotes’ of Leishmania donovani. Molecular and Biochemical Parasitology 58, 345354.
Kolodziejski P. J., Musial A., Koo J. S. and Eissa N. T. (2002). Ubiquitination of inducible nitric oxide synthase is required for its degradation. Proceedings of the National Academy of Sciences, USA 99, 1231512320.
Krobitsch S., Brandau S., Hoyer C., Schmetz C., Hubel A. and Clos J. (1998). Leishmania donovani heat shock protein 100: Characterization and function in amastigote stage differentiation. Journal of Biological Chemistry 273, 64886494.
Lincoln L. M., Ozaki M., Donelson J. E. and Beetham J. K. (2004). Genetic complementation of Leishmania deficient in PSA (GP46) restores their resistance to lysis by complement. Molecular and Biochemical Parasitology 137, 185189.
Mitani T., Terashima M., Yoshimura H., Nariai Y. and Tanigawa Y. (2005). TGF-beta 1 enhances degradation of IFN-gamma-induced iNOS protein via proteasomes in RAW 2647 cells. Nitric Oxide: Biology and Chemistry 13, 7887.
Piani A., Ilg T., Elefanty A. G., Curtis J. and Handman E. (1999). Leishmania major proteophosphoglycan is expressed by amastigotes and has an immunomodulatory effect on macrophage function. Microbes and Infection 1, 589599.
Rodrigues C. O., Scott D. A. and Docampo R. (1999). Presence of a vacuolar H+ pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+ ATPase. The Biochemical Journal 340, 759766.
Salotra P., Duncan R. C., Singh R., Subba Raju B. V., Sreenivas G. and Nakhasi H. L. (2006). Upregulation of surface proteins in Leishmania donovani isolated from patients of post-kala-azar dermal leishmaniasis. Microbes and Infection 8, 637644.
Salotra P., Sreenivas G., Pogue G. P., Lee N., Nakhasi H. L., Ramesh V. and Negi N. S. (2001). Development of a species-specific PCR assay for detection of Leishmania donovani in clinical samples from patients with kala-azar and post-kala-azar dermal leishmaniasis. Journal of Clinical Microbiology 39, 849854.
Saxena A., Lahav T., Holland N., Aggarwal G., Anupama A., Huang Y., Volpin H., Myler P. J. and Zilberstein D. (2007). Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Molecular and Biochemical Parasitology, doi:10.1016/j.molbiopara.2006.11.011.
Saxena A., Worthey E. A., Yan S., Leland A., Stuart K. D. and Myler P. J. (2003). Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. Molecular and Biochemical Parasitology 129, 103114.
Sreenivas G., Singh R., Selvapandian A., Negi N. S., Nakhasi H. L. and Salotra P. (2004). Arbitrary-primed PCR for genomic fingerprinting and identification of differentially regulated genes in Indian isolates of Leishmania donovani. Experimental Parasitology 106, 110118.
Sundar S. and Rai M. (2002). Laboratory diagnosis of visceral leishmaniasis. Clinical Diagnostics and Lab Immunology 9, 951958.
Walker J., Vasquez J. J., Gomez M. A., Drummelsmith J., Burchmore R., Girard I. and Ouellette M. (2006). Identification of developmentally regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Molecular and Biochemical Parasitology 147, 6473.
Wiese M. (1998). A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. The EMBO Journal 17, 26192628.
Wiese M., Kuhn D. D. and Grünfelder C. G. (2003). Protein kinase involved in flagellar-length control. Eukaryotic Cell 2, 769777.
Wu Y., El-Fakhry Y., Sereno D., Tamar S. and Papadopoulou B. (2000). A new developmentally regulated gene family in Leishmania amastigotes encoding a homolog of amastin surface proteins. Molecular and Biochemical Parasitology 110, 345357.
Yoshida M. and Xia Y. (2003). Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. Journal of Biological Chemistry 278, 3695336958.
Young J. A., Fivelman Q. L., Blair P. L., de la Vega P., Le Roch K. G., Zhou Y., Carucci D. J., Baker D. A. and Winzeler E. A. (2005). The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Molecular and Biochemical Parasitology 143, 6779.
Zamora-Veyl F. B., Kroemer M., Zander D. and Clos J. (2005). Stage-specific expression of the mitochondrial co-chaperonin of Leishmania donovani CPN10. Kinetoplastid Biology and Disease DOI: 10.1186/1475-9292-4-3.
Zhang W. W. and Matlashewski G. (1997). Loss of virulence in Leishmania donovani deficient in an amastigote-specific protein A2. Proceedings of the National Academy of Sciences, USA 94, 88078811.
Zilberstein D. and Shapira M. (1994). The role of pH and temperature in the development of Leishmania parasites. Annual Review of Microbiology 48, 449470.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 8
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 96 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.