Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T06:59:13.026Z Has data issue: false hasContentIssue false

Ultrastructural features of the tomont of Cryptocaryon irritans (Ciliophora: Prostomatea), a parasitic ciliate of marine fishes

Published online by Cambridge University Press:  30 January 2017

RUI MA
Affiliation:
School of Life Sciences, East China Normal University, Shanghai, China
XINPENG FAN*
Affiliation:
School of Life Sciences, East China Normal University, Shanghai, China
FEI YIN*
Affiliation:
Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
BING NI
Affiliation:
School of Life Sciences, East China Normal University, Shanghai, China
FUKANG GU
Affiliation:
School of Life Sciences, East China Normal University, Shanghai, China
*
*Corresponding author. School of Life Sciences, East China Normal University, Shanghai 200241, China. E-mail: xpfan@bio.ecnu.edu.cn; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Room 316, Building 6, 300 Jungong Road, Shanghai 200090, China. E-mail: yinf@ecsf.ac.cn
*Corresponding author. School of Life Sciences, East China Normal University, Shanghai 200241, China. E-mail: xpfan@bio.ecnu.edu.cn; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Room 316, Building 6, 300 Jungong Road, Shanghai 200090, China. E-mail: yinf@ecsf.ac.cn

Summary

Numerous studies have been conducted on the cellular morphology of Cryptocaryon irritans. However, details regarding the tomont stage of its life cycle remain lacking. In this study, we investigated the morphology of the tomont stage throughout encystment and cell division using light and electron microscopy. Results showed that there was no secretion of encystation-specific secretory vesicles or extrusomes during formation of the cyst wall. Instead, the synthesis and construction of the C. irritans cyst wall materials may involve molecular events at the pellicle. The somatic cilia and the cytostome were present during encystment and covered by the newly formed cyst wall. New somatic cilia were continuously created between old cilia and showed various lengths during cell division, a process that was similar to morphogenesis in many free-living ciliates. During cell division inside the tomont, dividing daughter cells formed temporary cell chains with no oral primordia before separating from each other into dissociative tomite precursors. The process of cell division may not be accompanied by stomatogenesis, and new oral primordia in offspring cells likely formed before the dividing cell chains split into dissociative spherical tomites. Mitochondrial autophagy was observed in encysting C. irritans cells. Numerous endosymbionts and Golgi structures were observed in the tomont cytoplasm. Cellular metabolic activity in the C. irritans tomont was quite high, with large amounts of materials or cellular organelles potentially being synthesized and prepared for the following infective theront stage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilar-Díaz, H., Carrero, J. C., Argüello-García, R., Laclette, J. P. and Morales-Montor, J. (2011). Cyst and encystment in protozoan parasites: optimal targets for new life-cycle interrupting strategies? Trends in Parasitology 27, 450458.CrossRefGoogle ScholarPubMed
Bai, J., Xie, M., Zhu, X., Dan, X. and Li, A. (2008). Comparative studies on the immunogenicity of theronts, tomonts and trophonts of Cryptocaryon irritans in grouper. Parasitology Research 102, 307313.CrossRefGoogle ScholarPubMed
Benčaťová, S., Tirjaková, E. and Vďačný, P. (2016). Resting cysts of Parentocirrus hortualis Voß, 1997 (Ciliophora, Hypotrichia), with preliminary notes on encystation and various types of excystation. European Journal of Protistology 53, 4560.Google Scholar
Bradbury, P. C. (1966). The life cycle and morphology of the apostomatous ciliate, Hyalophysa chattoni n. g., n. sp. Journal of Protozoology 13, 209225.Google Scholar
Bradbury, P. C., Song, W. and Zhang, L. (1997). Stomatogenesis during the formation of the tomite of Hyalophysa chattoni (Hymenostomatida: Ciliophora). European Journal of Protistology 33, 409419.Google Scholar
Brown, E. M. (1963). Studies on Cryptocaryon irritans Brown. In Progress in Protozoology, Proceedings of the 1st International Congress on Protozoology, Prague (ed. Ludvik, J., Lom, J., Vavra, J.), pp. 284287. Czechoslovak Academy of Sciences, Prague, 21–23 August 1961.Google Scholar
Burgess, P. J. (1992). Cryptocaryon irritans Brown, 1951 (Ciliophora): transmission and immune response in the mullet Chelon labrosus (Risso, 1826) . PhD thesis. University of Plymouth, Plymouth, U.K. Google Scholar
Calvo, P., Fernandez-Aliseda, M. C., Garrido, J. and Torres, A. (2003). Ultrastructure, encystment and cyst wall composition of the resting cyst of the peritrich ciliate Opisthonecta henneguyi . Journal of Eukaryotic Microbiology 50, 4956.CrossRefGoogle ScholarPubMed
Chávez-Munguía, B., Cedillo-Rivera, R. and Martínez-Palomo, A. (2004). The ultrastructure of the cyst wall of Giardia lamblia . Journal of Eukaryotic Microbiology 51, 220226.Google Scholar
Chávez-Munguía, B., Omaña-Molina, M., González-Lázaro, M., González-Robles, A., Cedillo-Rivera, R., Bonilla, P. and Martínez-Palomo, A. (2007). Ultrastructure of cyst differentiation in parasitic protozoa. Parasitology Research 100, 11691175.CrossRefGoogle ScholarPubMed
Cheung, P. F., Nigrelli, R. F. and Ruggieri, G. D. (1981). Scanning electron microscopy on Cryptocaryon irritans Brown, 1951, a parasitic ciliate in marine fish. Journal of Aquaculture 2, 7072.Google Scholar
Colorni, A. (1985). Aspects of the biology of Cryptocaryon irritans, and hyposalinity as gilt-head sea bream Sparus aurata . Diseases of Aquatic Organisms 22, 1922.Google Scholar
Colorni, A. and Burgess, P. (1997). Cryptocaryon irritans Brown 1951, the cause of ‘white spot disease’ in marine fish: an update. Aquarium Sciences and Conservation 1, 217238.CrossRefGoogle Scholar
Colorni, A. and Diamant, A. (1993). Ultrastructural features of Cryptocaryon irritans, a ciliate parasite of marine fish. European Journal of Protistology 29, 425434.Google Scholar
Dickerson, H. W. (2006). Ichthyophthirius multifiliis and Cryptocaryon irritans (Phylum Ciliophora). In Fish Diseases and Disorders, Vol. 1, 2nd Edn, (ed. Woo, P. T. K. and Leatherland, J. F.), Protozoan and metazoan infections, pp. 116153. CABI Publishing, Oxfordshire.Google Scholar
Diggles, B. K. (1997). Some information on the morphology of Cryptocaryon irritans from South-East Queensland, Australia. European Journal of Protistology 33, 200210.Google Scholar
Diggles, B. K. and Lester, R. J. G. (1996). Influence of temperature and host species on the development of Cryptocaryon irritans . Journal of Parasitology 82, 4551.CrossRefGoogle ScholarPubMed
Ewing, M. S. and Ewing, S. A. (1983). Ichthyophthirius multifiliis: morphology of the cyst wall. Transactions of the American Microscopical Society 102, 122128.Google Scholar
Farquhar, M. G. and Palade, G. E. (1981). The Golgi apparatus (complex)-(1954–1981)-from artifact to center stage. Journal of Cell Biology 91, 77s103s.Google Scholar
Foissner, W. (1993). Colpodea (Ciliophora). In Protozoenfauna, Vol. 4/1. (ed. Matthes, D.), Gustav Fischer Verlag, Stuttgart, Jena, New York.Google Scholar
Greco, N., Bussers, J. C., Van Daele, Y. and Goffinet, G. (1990). Ultrastructural localization of chitin in the cystic wall of Euplotes muscicola Kahl (Ciliata, Hypotrichia). European Journal of Protistology 26, 7580.Google Scholar
Gu, F. and Ni, B. (1993). The exploration of preparing protozoan specimen for scanning electron microscopy. Journal of Chinese Electron Microscopy Society 12, 525529.Google Scholar
Gu, F. and Zhou, Z. (1990). Study on morphogenesis of Hypotrich ciliates during asexual reproduction. Journal of East China Normal University (Natural Science) 2, 8493.Google Scholar
Gu, F., Chen, L., Ni, B. and Zhang, X. (2002). A comparative study on the electron microscopic enzymo-cytochemistry of Paramecium bursaria from light and dark cultures. European Journal of Protistology 38, 267278.CrossRefGoogle Scholar
Gutierrez, J. C. and Perez-Silva, J. (1983). Ultrastructural aspects of the precystic and cystic cytoplasm of the hypotrichous ciliate, Laurentiella acuminata . Acta Protozoologica 22, 203210.Google Scholar
Hatanaka, A., Umeda, N., Yamashita, S. and Hirazawa, N. (2007). Identification and characterization of a putative agglutination/immobilization antigen on the surface of Cryptocaryon irritans . Parasitology 134, 11631174.CrossRefGoogle ScholarPubMed
Hausmann, K. (1978). Extrusive organelles in protists. International Review of Cytology 52, 197276.Google Scholar
Herth, W., Mulisch, M. and Zugenmaier, P. (1986). Comparison of chitin fibril structure and assembly in three unicellular organisms. In Chitin in Nature and Technology (ed. Muzzarelli, R., Jeuniaux, C. and Gooday, G. W.), pp. 107120. Springer, New York, USA.Google Scholar
Hiller, S. and Bardele, C. F. (1988). Prorodon aklitolophon, n. spec. and the “dorsal brush” as a character to identify certain subgroups in the genus prorodon . Archiv Für Protistenkunde 136, 213236.CrossRefGoogle Scholar
Hirazawa, N., Oshima, S., Hara, T., Mitsuboshi, T. and Hata, K. (2001). Antiparasitic effect of medium-chain fatty acids against the ciliate Cryptocaryon irritans infestation in the Red Sea bream Pagrus major . Aquaculture 198, 219228.Google Scholar
Hirazawa, N., Goto, T. and Shirasu, K. (2003). Killing effect of various treatments on the monogenean Heterobothrium okamotoi eggs and oncomiracidia and the ciliate Cryptocaryon irritans cysts and theronts. Aquaculture 223, 113.CrossRefGoogle Scholar
Holt, P. A. and Chapman, G. B. (1971). The fine structure of the cyst wall of the ciliated protozoon Didinium nasutum . Journal of Protozoology 18, 604614.Google Scholar
Huang, W., Ma, Y. and Li, A. (2005). Ultrastructural study on Cryptocaryon irritans throughout the life cycle of artificially infecting Trachinotus blochi . Journal of Fisheries of China 29, 635642.Google Scholar
Huang, X., Sun, Z., Guo, G., Zheng, C., Xu, Y., Yuan, L. and Liu, C. (2012). Cloning and characterization of a surface antigen CiSA–32·6 from Cryptocaryon irritans . Experimental Parasitology 130, 189194.Google Scholar
Kesintepe, M. (1995). Light and electron microscopic observations on the ciliate Cryptocaryon irritans (Brown 1951) throughout the life cycle . PhD thesis. University of Georgia, Athens, Georgia.Google Scholar
Kurz, S. and Tiedtke, A. (1993). The Golgi apparatus of Tetrahymena thermophila . Journal of Eukaryotic Microbiology 40, 1013.CrossRefGoogle ScholarPubMed
Landers, S. C. (1991). Secretion of the reproductive cyst wall by the apostome ciliate Hyalophysa chattoni . European Journal of Protistology 27, 160167.Google Scholar
Leipe, D. (1989). Prorodon spirogyrophagus, nov. spec. (Ciliophora, Prostomatea): morphology, infraciliature and food-uptake. European Journal of Protistology 24, 392401.Google Scholar
Li, A., Huang, W., Ma, Y. and Xie, M. (2006). Cytostome ultrastructure of Cryptocaryon irritans GD1 strain from experimental host-snubnose pompano (Trachinotus blochi). Acta Zootaxonomica Sinica 31, 256263.Google Scholar
Li, R., Dan, X. and Li, A. (2013). Siganus oramin recombinant L-amino acid oxidase is lethal to Cryptocaryon irritans . Fish and Shellfish Immunology 35, 18671873.Google Scholar
Lokanathan, Y., Mohd-Adnan, A., Wan, K. L. and Nathan, S. (2010). Transcriptome analysis of the Cryptocaryon irritans tomont stage identifies potential genes for the detection and control of cryptocaryonosis. BMC Genomics 11, 76.Google Scholar
Long, H. and Zufall, R. A. (2010). Diverse modes of reproduction in the marine free-living ciliate Glauconema trihymene . BMC Microbiology 10, 108.Google Scholar
Lynn, D. H. (2008). The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature, 3rd Edn. Springer, Dordrecht.Google Scholar
Ma, Y., Li, A., Xie, M. and Huang, W. (2006). Cortical ultrastructures of Cryptocaryon irritans GD1 strain infecting Trachinotus blochi experimentally. Acta Zoologica Sinica 52, 396405.Google Scholar
Ma, R., Ni, B., Fan, X., Warren, A., Yin, F. and Gu, F. (2016). Ultrastructure observation on the cells at different life history stages of Cryptocaryon irritans (Ciliophora: Prostomatea), a parasitic ciliate of marine fishes. Parasitology 143, 14791489.Google Scholar
Mai, Y., Li, Y., Li, R., Li, W., Huang, X., Mo, Z. and Li, A. (2015). Proteomic analysis of differentially expressed proteins in the marine fish parasitic ciliate Cryptocaryon irritans . Veterinary Parasitology 211, 111.Google Scholar
Matthews, R. A. (2005). Ichthyophthirius multifiliis Fouquet and ichthyophthiriosis in freshwater teleosts. Advances in Parasitology 59, 159241.CrossRefGoogle ScholarPubMed
Matthews, B. F., Matthews, R. A. and Burgess, P. J. (1993). Cryptocaryon irritans Brown, 1951 (Ichthyophthiriidae): the ultrastructure of the somatic cortex throughout the life cycle. Journal of Fish Diseases 16, 339349.CrossRefGoogle Scholar
McArdle, E. W., Berquist, B. L. and Ehret, C. F. (1980). Structural changes in Tetrahymena rostrata during induced encystment. Journal of Protozoology 27, 388397.Google Scholar
Molloy, D. P., Lynn, D. H. and Giamberini, L. (2005). Ophryoglena hemophaga n. sp. (Ciliophora: Ophryoglenidae): a parasite of the digestive gland of zebra mussels Dreissena polymorpha . Diseases of Aquatic Organisms 65, 237243.Google Scholar
Morgado-Diaz, J. A., Nakamura, C. V., Agrellos, O. A., Dias, W. B., Previato, J. O., Mendonca-Previato, L. and De Souza, W. (2001). Isolation and characterization of the Golgi complex of the protozoan Trypanosoma cruzi . Parasitology 123, 3343.Google Scholar
Matsusaka, T. and Hongo, F. (1984). Cytochemical and electrophoretic studies on the cyst wall of a ciliate, Histriculus muscorum Kahl. Journal of Protozoology 31, 471475.Google Scholar
Nigrelli, R. F. and Ruggieri, G. D. (1966). Enzootics in the New York Aquarium caused by Cryptocaryon irritans Brown, 1951, a histophagous ciliate in the skin, eyes and gills of marine fishes. Zoologica 51, 97102.Google Scholar
Niu, S., Jin, Y., Xu, X., Qiao, Y., Wu, Y., Mao, Y., Su, Y. and Wang, J. (2013). Characterization of a novel piscidin-like antimicrobial peptide from Pseudosciaena crocea and its immune response to Cryptocaryon irritans . Fish and Shellfish Immunology 35, 513524.Google Scholar
Pironet, F. N. and Jones, J. B. (2000). Treatments for ectoparasites and diseases in captive Western Australian dhufish. Aquaculture International 8, 349361.CrossRefGoogle Scholar
Rigos, G., Karagouni, E., Kyriazis, I., Athanasiou, E., Grigorakis, K., Kotou, E. and Katharios, P. (2013). In vitro and in vivo evaluation of quinine in gilthead sea bream, Sparus aurata naturally infected with the ciliate Cryptocaryon irritans . Aquaculture 416, 185191.Google Scholar
Rothman, J. E. (1981). The Golgi apparatus: two organelles in tandem. Science 213, 12121219.Google Scholar
Ruthmann, A. and Kuck, A. (1985). Formation of the cyst wall of the ciliate Colpoda steinii . Journal of Protozoology 32, 677682.Google Scholar
Savoie, A. (1962a). Ophryoglena mugardi n. sp. (Ciliata, Hymenostomatida, Ophryoglenidae). Cycles de reproduction. Journal of Protozoology 9, 296303.CrossRefGoogle Scholar
Savoie, A. (1962b). Ophryoglena faurei n. sp. (Ciliata Hymenostomatida Ophryoglenidae) cycles de reproduction. The Journal of Protozoology 9, 427434. doi: 10.1111/j.1550-7408.1962.tb02648.x.Google Scholar
Tuffrau, M. (1952). La morphogenèse de division chez les Colpodidae. Bulletin Biologique de la France et de la Belgique 86, 309320.Google Scholar
Verni, F. and Rosati, G. (2011). Resting cysts: a survival strategy in protozoa ciliophora. Italian Journal of Zoology 78, 134145.Google Scholar
Wang, F., Xie, M. and Li, A. (2010). A novel protein isolated from the serum of rabbitfish (Siganus oramin) is lethal to Cryptocaryon irritans . Fish and Shellfish Immunology 29, 3241.CrossRefGoogle ScholarPubMed
Williams, N. E. (1960). The polymorphic life history of Tetrahymena patula . Journal of Protozoology 7, 1017.Google Scholar
Xu, R., Jiang, J. and Chen, B. (1992). Light microscopy observation on the life cycle of the Cryptocaryon irritans . Marine Sciences 3, 4243.Google Scholar
Yin, F., Gong, H., Ke, Q. and Li, A. (2015). Stress, antioxidant defence and mucosal immune responses of the large yellow croaker Pseudosciaena crocea challenged with Cryptocaryon irritans . Fish and Shellfish Immunology 47, 344351.Google Scholar
Yin, F., Sun, P., Wang, J. and Gao, Q. (2016). Transcriptome analysis of dormant tomonts of the marine fish ectoparasitic ciliate Cryptocaryon irritans under low temperature. Parasites and Vectors 9, 280.CrossRefGoogle ScholarPubMed
Yoshinaga, T. and Dickerson, H. W. (1994). Laboratory propagation of Cryptocaryon irritans on a saltwater-adapted Poecilia hybrid, the black molly. Journal of Aquatic Animal Health 6, 197201.Google Scholar