Skip to main content

Understanding transmissibility patterns of Chagas disease through complex vector–host networks


Chagas disease is one of the most important vector-borne zoonotic diseases in Latin America. Control strategies could be improved if transmissibility patterns of its aetiologic agent, Trypanosoma cruzi, were better understood. To understand transmissibility patterns of Chagas disease in Mexico, we inferred potential vectors and hosts of T. cruzi from geographic distributions of nine species of Triatominae and 396 wild mammal species, respectively. The most probable vectors and hosts of T. cruzi were represented in a Complex Inference Network, from which we formulated a predictive model and several associated hypotheses about the ecological epidemiology of Chagas disease. We compiled a list of confirmed mammal hosts to test our hypotheses. Our tests allowed us to predict the most important potential hosts of T. cruzi and to validate the model showing that the confirmed hosts were those predicted to be the most important hosts. We were also able to predict differences in the transmissibility of T. cruzi among triatomine species from spatial data. We hope our findings help drive efforts for future experimental studies.

Corresponding author
*Corresponding author: C3 – Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), 04510 Mexico City, Mexico. E-mail:
Hide All
Abad-Franch, F., Diotaiuti, L., Gurgel-Gonçalves, R. and Gürtler, R. E. (2013). Certifying the interruption of Chagas disease transmission by native vectors: cui bono? Memórias do Instituto Oswaldo Cruz 108, 251254.
Bargues, M. D., Klisiowicz, D. R., Gonzalez-Candelas, F., Ramsey, J. M., Monroy, C., Ponce, C., Salazar-Schettino, P. M., Panzera, F., Abad-Franch, F., Sousa, O. E., Schofield, C. J., Dujardin, J. P., Guhl, F. and Mas-Coma, S. (2008). Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in Central America, and its position within the genus Triatoma . PLoS Neglected Tropical Diseases 2, e233.
Berzunza-Cruz, M., Rodríguez-Moreno, Á., Gutiérrez-Granados, G., González-Salazar, C., Stephens, C. R., Hidalgo-Mihart, M., Marina, C. F., Rebollar-Téllez, E., Bailón-Martínez, D., Balcells, C., Ibarra-Cerdeña, C. N., Sánchez-Cordero, V. and Becker, I. (2015). Leishmania (L.) mexicana infected bats in Mexico: novel potential reservoirs. PLoS Neglected Tropical Diseases 9, 115.
Bosseno, M. F., Barnabé, C., Ramirez, M. J., Kengne, P., Guerrero, S., Lozano, F., Ezequiel, K., Gastélum, M. and Brenière, S. F. (2009). Wild ecotopes and food habits of Triatoma longipennis infected by Trypanosoma cruzi lineages I and II in Mexico. The American Journal of Tropical Medicine and Hygiene 80, 988991.
Ceballos, G. and Arroyo-Cabrales, J. (2012). Lista actualizada de los mamíferos de México 2012. Revista Mexicana de Mastozoología, Nueva época 2, 2880.
Dorn, P., Monroy, C. and Curtis, A. (2007). Triatoma dimidiata (Latreille, 1811): a review of its diversity across its geographic range and the relationship among populations. Infection, Genetics and Evolution 7, 343352.
Dorn, P. L., Calderón, C., Melgar, S., Moguel, B., Solorzano, E., Dumonteil, E., Rodas, A., Rua, N., Garnica, R. and Monroy, C. (2009). Two distinct Triatoma dimidiata (Latreille, 1811) taxa are found in sympatry in Guatemala and Mexico. PLoS Neglected Tropical Diseases 3, e393.
González-Salazar, C. and Stephens, C. (2012). Constructing ecological networks: a tool to infer risk of transmission and dispersal of Leishmaniasis. Zoonoses and Public Health 59, 179193.
González-Salazar, C., Stephens, C. and Marquet, P. A. (2013). Comparing the relative contributions of biotic and abiotic factors as mediators of species’ distributions. Ecological Modelling 248, 5770.
González-Salazar, C., Martínez-Meyer, E. and López-Santiago, G. (2014). A hierarchical classification of trophic guilds for North American birds and Mammals. Revista Mexicana de Biodiversidad 85, 931941.
Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. and Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution 19, 497503.
Herrera-Aguilar, M., Be-Barragán, L. A., Ramirez-Sierra, M. J., Tripet, F., Dorn, P. and Dumonteil, E. (2009). Identification of a large hybrid zone between sympatric sibling species of Triatoma dimidiata in the Yucatán Peninsula, Mexico, and its epidemiological importance. Infection, Genetics and Evolution 9, 13451351.
Jansen, A. M., and Roque, A. R. L. (2010). Domestic and wild mammalian reservoirs. In American Trypanosomiasis Chagas Disease. One Hundred Years of Research (ed. Telleria, J. and Tibayrenc, M.), pp. 249276. Elsevier, Amsterdam.
Jansen, A. M., Xavier, S. C. C. and Roque, A. R. L. (2015). The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment. Acta Tropica 151, 115.
Lent, H. and Wygodzinsky, P. (1979). Revision of the Triatominae (Hemiptera, Reduviidae) and their significance as vectors of Chagas disease. Bulletin of the American Museum of Natural History 163, 123520.
Martínez-Ibarra, J. A. and Novelo-López, M. (2004). Blood meals to molt, feeding time and postfeeding defecation delay of Meccus pallidipennis (Stål, 1872) (Hemiptera: Reduviidae) under laboratory conditions. Folia Entomologica Mexicana 43, 313319.
Monteiro, F. A., Peretolchina, T., Lazoski, C., Harris, K., Dotson, E. M., Abad-Franch, F., Tamayo, E., Pennington, P. M., Monroy, C., Cordon-Rosales, C., Salazar-Schettino, P. M., Gómez-Palacio, A., Grijalva, M. J., Beard, C. B. and Marcet, P. L. (2013). Phylogeographic pattern and extensive mitocondrial DNA divergence disclose a species complex within the Chagas disease vector Triatoma dimidiata . PLoS ONE 8, e70974.
Morrone, J. J. (2009). Evolutionary Biogeography: an Integrative Approach with Case Studies. Columbia University Press, New York.
Mota, J., Chacon, J. C., Gutierrez, A., Sanchez-Cordero, V., Wirtz, R., Ordoñez, R., Panzera, F. and Ramsey, J. M. (2007). Identification of Chagas disease vector blood meal source using a multiplex cytochrome b PCR assay. Vector Borne Zoonotic Disease 7, 617627.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P. and Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933938.
Ponder, W. F., Carter, G. A., Flemons, P. and Chapman, R. R. (2001). Evaluation of museum collection data for use in biodiversity assessment. Conservation Biology 15, 648657.
Ramsey, J. M., Gutierrez-Cabrera, A. E., Salgado-Ramírez, L., Peterson, T. A., Sanchez-Cordero, V. and Ibarra-Cerdeña, C. N. (2012). Ecological connectivity of Trypanosoma cruzi reservoirs and Triatoma pallidipennis in an anthropogenic landscape with endemic Chagas disease. PLoS ONE 7, e46013.
Ramsey, J. M., Peterson, A. T., Carmona-Castro, O., Moo-Llanes, D. A., Nakazawa, Y., Butrick, M., Tun-Ku, E., Cruz-Félix, K. and Ibarra-Cerdeña, C. N. (2015). Atlas of Mexican Triatominae (Reduviidae: Hemiptera) and vector transmission of Chagas disease. Memórias do Instituto Oswaldo Cruz 110, 339352.
Rodrigues-Coura, J. (2013). Chagas disease: control, elimination and eradication. Is it possible? Memórias do Instituto Oswaldo Cruz 108, 962967.
Salazar-Schettino, P. M., Arteaga, I. H. and Cabrera, M. (2005). Tres especies de triatominos y su importancia como vectores de Trypanosoma cruzi en México. Medicina Buenos Aires 65, 6369.
Sierra, R. and Stephens, C. R. (2012). Exploratory analysis of the interrelations between co-located Boolean spatial features using network graphs. International Journal of Geographical Information Science 26, 441468.
Stephens, C. R., Heau, J. G., González, C., Ibarra-Cerdeña, C., Sánchez-Cordero, V. and González-Salazar, C. (2009). Using biotic interaction networks for prediction in biodiversity and emerging diseases. PLoS ONE 4, e5725.
Stephens, C. R., González-Salazar, C., Sánchez-Cordero, V., Becker, I., Rebollar-Tellez, E., Rodríguez-Moreno, Á., Berzunza-Cruz, M., Domingo Balcells, C., Gutiérrez-Granados, G., Hidalgo-Mihart, M., Ibarra-Cerdeña, C. N., Ibarra López, P., Iñiguez Dávalos, L. I. and Ramírez Martínez, M. M. (2016). Can you judge a disease host by the company it keeps? Predicting disease hosts and their relative importance: a case study for Leishmaniasis. PLoS Neglected Tropical Diseases 10, 121.
Varela, S., Anderson, R. P., García-Valdés, R. and Fernández-González, F. (2014). Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 10841091.
Villalobos, G., Martínez-Hernández, F., de la Torre, P., Laclette, J. P. and Espinoza, B. (2011). Entomological indices, feeding sources, and molecular identification of Triatoma phyllosoma (Hemiptera: Reduviidae) one of the main vectors of Chagas disease in the Istmo de Tehuantepec, Oaxaca, Mexico. The American Journal of Tropical Medicine and Hygiene 85, 490497.
World Health Organization (2015). Chagas Disease in Latin America: an Epidemiological Update Based on 2010 Estimates . WHO Weekly Epidemiological Record 90. World Health Organization, Geneva, Switzerland.
Yañez-Arenas, C., Guevara, R., Martínez-Meyer, E., Mandujano, S. and Lobo, J. M. (2014). Predicting species’ abundances from occurrence data: effects of sample size and bias. Ecological Modelling 294, 3641.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0031-1820
  • EISSN: 1469-8161
  • URL: /core/journals/parasitology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Rengifo-Correa supplementary material
Rengifo-Correa supplementary material

 Word (29 KB)
29 KB


Altmetric attention score

Full text views

Total number of HTML views: 38
Total number of PDF views: 322 *
Loading metrics...

Abstract views

Total abstract views: 1136 *
Loading metrics...

* Views captured on Cambridge Core between 12th January 2017 - 21st August 2018. This data will be updated every 24 hours.