Skip to main content
    • Aa
    • Aa

Monte Carlo indexing with McMaille

  • A. Le Bail (a1)

A Monte Carlo code for indexing powder diffraction patterns is presented. Cell parameters are generated randomly and tested against an idealized powder profile generated from the extracted d’s and I’s. Limits with this program in solving problems associated with zeropoint errors and impurity lines are examined. Most problems (V<2000 Å3, cell parameters <20 Å) are solved in less than 1–15 min if the symmetry is as low as monoclinic (with a >2 GHz processor); more time is needed for triclinic cases. Attempts are shown to be successful for the indexation of two-phase samples in simple cases (combining orthorhombic or higher symmetries). © 2004 International Centre for Diffraction Data.

Key words: powder diffraction, indexing, Monte Carlo

Corresponding author
a)Author to whom correspondence should be addressed; Electronic mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. Boultif and D. Louër (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987993. acr, JACGAR 0021-8898

A. A. Coelho (2003). “Indexing of powder diffraction patterns by iterative use of singular value decomposition,” J. Appl. Crystallogr. JACGAR 36, 8695. acr, JACGAR 0021-8898

P. M. DeWolf (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. acr, JACGAR 0021-8898

C. Dong (1999). “PowderX: Windows-95-based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. JACGAR 32, 838. acr, JACGAR 0021-8898

B. M. Kariuki , S. A. Belmonte , M. I. McMahon , R. L. Johnston , K. D. M. Harris , and R. J. Nelmes (1999). “A new approach for indexing powder diffraction data based on whole-profile fitting and global optimization using a genetic algorithm,” J. Synchrotron. Radiat. JSYRES 6, 8792. jsy, JSYRES 0909-0495

A. Le Bail , H. Duroy , and J. L. Fourquet (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. MRBUAC 23, 447452. mrb, MRBUAC 0025-5408

M. A. Neumann (2003). “X-Cell: a novel indexing algorithm for routine tasks and difficult cases,” J. Appl. Crystallogr. JACGAR 36, 356365. acr, JACGAR 0021-8898

G. S. Pawley (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. JACGAR 14, 357361. acr, JACGAR 0021-8898

H. M. Rietveld (1969). “A Profile Refinement Method for Nuclear and Magnetic Structures,” J. Appl. Crystallogr. JACGAR 2, 6571. acr, JACGAR 0021-8898

G. S. Smith and R. L. Snyder (1979). “FN: A criterion for rating powder diffraction pattern and evaluating the reliability of powder pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6085. acr, JACGAR 0021-8898

J. W. Visser (1969). “A fully automatic program for finding the unit cell from powder data,” J. Appl. Crystallogr. JACGAR 2, 8995. acr, JACGAR 0021-8898

P.-E. Werner , L. Eriksson , and M. Westdahl (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367370. acr, JACGAR 0021-8898

V. B. Zlokazov (1992). “MRIAAU-a program for autoindexing multiphase polycrystals,” J. Appl. Crystallogr. JACGAR 25, 6972. acr, JACGAR 0021-8898

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Powder Diffraction
  • ISSN: 0885-7156
  • EISSN: 1945-7413
  • URL: /core/journals/powder-diffraction
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 1
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 168 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th September 2017. This data will be updated every 24 hours.