Skip to main content Accessibility help


  • Pasquale Cirillo (a1) and Jürg Hüsler (a1)


A cascading failure is a failure in a system of interconnected parts, in which the breakdown of one element can lead to the subsequent collapse of the others. The aim of this paper is to introduce a simple combinatorial model for the study of cascading failures. In particular, having in mind particle systems and Markov random fields, we take into consideration a network of interacting urns displaced over a lattice. Every urn is Pólya-like and its reinforcement matrix is not only a function of time (time contagion) but also of the behavior of the neighboring urns (spatial contagion), and of a random component, which can represent either simple fate or the impact of exogenous factors. In this way a non-trivial dependence structure among the urns is built, and it is used to study default avalanches over the lattice. Thanks to its flexibility and its interesting probabilistic properties, the given construction may be used to model different phenomena characterized by cascading failures such as power grids and financial networks.



Hide All
1.Ahmad, M.I. (1988). Applications of statistics in flood frequency analysis. PhD thesis, University of St. Andrews.
2.Aldous, D.J. (1985). Exchangeability and related topics. Lecture Notes in Mathematics vol. 117, New York: Springer
3.Anderson, T.W. & Darling, D.A. (1952). Asymptotic theory of certain goodness-of-fit criteria based on stochastic processes. Annals of Mathematical Statistics 23: 193212.
4.Aoki, M. (2000). Cluster size distributions of economic agents of many types in a market. Journal of Mathematical Analysis and Applications 249: 3252.
5.Balakrishnan, N. (1997). Advances in combinatorial methods and applications to probability and statistics. Berlin: Birkhäuser.
6.Bernoulli, J. (1713). Ars Conjectandi. German version in Wahrscheinlichkeitsrechnung: Ars conjectandi. 1., 2., und 4. Teil (1998). Berlin: Harry Deutsch.
7.Berti, P., Pratelli, L. & Rigo, P. (2004). Limit theorems for a class of identically distributed random variables. Annals of Probability 32: 20292052.
8.Bhargava, S.C. & Mukherjee, A. (1994). Evolution and technological growth in a model based on stochastic cellular automata. In Leydesdorff, L., Van den Besselaar, P., (eds.), Evolutionary economics and chaos theory: new directions in technology studies. London: Pinter.
9.Blume, L.E. & Durlauf, S.N. (2003). Equilibrium concepts for social interaction models. International Game Theory Review 5: 193209.
10.Bottazzi, G. & Secchi, A. (2003). Why are distributions of firm growth rates tent-shaped? Economics Letters 80: 415420.
11.Choulakian, V. & Stephens, M.A. (2001). Goodness-of-fit tests for the generalized Pareto distribution. Technometrics 43: 478484.
12.Cifarelli, D.M. & Regazzini, E. (1978). Problemi statistici non parametrici in condizioni di scambiabilità parziale. Impiego di medie associative. In: Istituto di Matematica Finanziaria dell'Università di Torino, Serie III, No. 12. English translation available from[1].20080528.135739.pdf
13.Cirillo, P. (2008). New urn approaches to shock and default models. PhD thesis, Milan: Bocconi University.
14.Cirillo, P. (2012). A simple model of spatially dependent urns. Working Paper, University of Bern.
15.Cirillo, P., & Hüsler, J. (2009). An urn-based approach to generalized extreme shock models. Statistics and Probability Letters 79: 969976.
16.Cirillo, P., & Hüsler, J. (2009). On the upper tail of Italian firms size distribution. Physica A Statistical Mechanics and Applications 388: 15461554.
17.Cirillo, P., & Hüsler, J. (2011). Shock models for defaults: parametric and nonparametric approaches. In Hunter, D.R., Richards, D.S.P., Rosenberger, J.L. (eds.) Nonparametric statistics and mixture models. Singapore: WSP.
18.Clauset, A., Shalizi, C.R. & Newman, M.E.J. (2009). Power-law distributions in empirical data. SIAM Review 51(4): 661678.
19.Costantini, D., Donadio, S., Garibaldi, U. & Viarengo, P. (2005). Herding and clustering: Ewens vs. Simon-Yule models. Physica A Statistical Mechanics and Applications 355: 224231.
20.Dai Pra, P, Runggaldier, W.J., Sartori, E. & Tolotti, M. (2009). Large portfolio losses: a dynamic contagion model. Annals of Applied Probabability 19: 347394. Finetti, B. (1975). Theory of probability. New York: John Wiley and Sons.
22.Delli Gatti, D., Gallegati, M., Greenwald, B.C., Russo, A. & Stiglitz, J.E. (2009). Business fluctuations and bankruptcy avalanches in an evolving network economy. Journal of Econimic Interaction and Coordination 4: 195212.
23.Dobson, I., Carreras, B.A., Lynch, V.E. & Newman, D.E. (2007). Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization. Chaos 17, 026103.
24.Dobson, I., Wierzbicki, K.R., Carreras, B.A., Lynch, V.E. & Newman, D. (2006). An estimator of propagation of cascading failures. Thirty-ninth Hawaii International IEEE Conference on System Sciences Proceedings.
25.Drees, H., de Haan, L. & Li, D. (2006). Approximations to the tail empirical distribution function with application to testing extreme value conditions. Journal of Statistical Planning and Inference 136: 34983538.
26.Durrett, R. (2010). Some features of the spread of epidemics and information on a random graph. Proc. Natl. Acad. Sei. 107: 44914498.
27.Eggenberger, F. & Pólya, G. (1923). Über die Statistik verketteter Vorgänge. Zeitschrift für Angerwandte Mathematik and Mechanik 1: 279289.
28.Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin: Springer.
29.Falk, M., Hüsler, J. & Reiss, R-D. (2004). Laws of small numbers: extremes and rare events. Basel: Birkhäuser.
30.Flajolet, P., Dumas, P. & Puyhaubert, V. (2006). Some exactly solvable models of urn process theory. Fourth Colloquium on Mathematics and Computer Science DMTCS 59.
31.Frey, R. & Backhaus, J. (2008). Pricing and hedging of portfolio credit derivatives with interacting default intensities. International Journal of Theoretical and Applied Finance 11: 611631.
32.Giesecke, K. & Weber, S. (2006). Credit contagion and aggregate losses. Journal of Economic Dynamics and Control 30: 741767.
33.Giudici, P., Mezzetti, M. & Muliere, P. (2003). Mixtures of products of Dirichlet processes for variable selection in survival analysis. Journal of Statistical Planning and Inference 111: 101115.
34.Ghosh, J.K. & Ramamoorthi, R.V. (2002). Bayesian nonparametrics. New York: Springer.
35.Hall, P. & Heyde, C.C. (1980). Martingale limit theory and its applications. San Diego: Academic Press.
36.Johnson, N.L. & Kotz, S. (1977). Urn models and their applications. New York: Wiley.
37.Johnson, R.A. & Wichern, D.A. (2007). Applied multivariate analysis. New Jersey: Prentice Hall.
38.Kindermann, R. & Snell, J.L. (1980). Markov random fields and their applications. San Francisco: AMS Press.
39.Liggett, T.M., Steif, J.E. & Tóth, B. (2007). Statistical mechanical systems on complete graphs, infinite exchangeability, finite extensions and a discrete finite moment problem. Annals of Probability 35: 867914.
40.Liggett, T. (2009). Stochastic interacting systems: Contact, voter and exclusion processes. New York: Springer.
41.Lindley, V. & Singpurwalla, N.D. (2002). On exchangeable, causal and cascading failures. Statistical Science 17: 209219.
42.Lorenz, J., Battiston, S. & Schweitzer, F. (2009). Systemic risk in an unifying framework for cascading processes on networks. European Physical Journal B 71: 441460.
43.Mahmoud, H.M. (2009). Polya Urn Models. Boca Raton: CRP Press.
44.Marshall, A.W. & Olkin, I. (1993). Bivariate life distributions from Polya's urn model for contagion. Journal of Applied Probability 30: 497508.
45.Marsili, M. & Valleriani, A. (1998). Self organization of interacting Polya urn. European Physical Journal B 3: 417420.
46.May, C., Secchi, P. & Paganoni, A. (2002). On a two-color generalized Polya urn. Metron LXIII, 115134.
47.Muliere, P., Paganoni, A. & Secchi, P. (2006). A randomly reinforced urn. Journal of Statistical Planning and Inference 136: 18531874.
48.Muliere, P., Secchi, P. & Walker, S.G. (2000). Urn schemes and reinforced random walks. Stochastic Processes and their Applications 88: 5978.
49.Murri, N. & Pinto, N. (2002). Cluster size distribution in self-organized systems. Physica B Condensed Matter 321: 404407.
50.Paganoni, A.M. & Secchi, P. (2004). Interacting reinforced-urn systems. Advances in Applied Probability 36: 791804.
51.Pemantle, R. (2007). A survey of random processes with reinforcement. Probability Surveys 4: 179.
52.Pérez, P. (1998). Markov random fields and images. CWI Quarterly 11: 413437.
53.Swift, A. (2008). Stochastic models of cascading failures. Journal of Applied Probability 45: 907921.
54.Wang, J., Liu, Y. & Jiao, Y. (2009). A new cascading failure model with delay time in congested complex networks. Journal of System Science and System Engineering 18: 369381.
55.Young, A.P. (1998). Spin glasses and random fields. Singapore: WSP.


  • Pasquale Cirillo (a1) and Jürg Hüsler (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed