Skip to main content Accessibility help


  • Yonghua Yin (a1)

The random neural network (RNN) is a mathematical model for an “integrate and fire” spiking network that closely resembles the stochastic behavior of neurons in mammalian brains. Since its proposal in 1989, there have been numerous investigations into the RNN's applications and learning algorithms. Deep learning (DL) has achieved great success in machine learning. Recently, the properties of the RNN for DL have been investigated, in order to combine their power. Recent results demonstrate that the gap between RNNs and DL can be bridged and the DL tools based on the RNN are faster and can potentially be used with less energy expenditure than existing methods.

Hide All
1.Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems, software available from [Online]. Available:
2.Abdelbaki, H.E. (1999). Random neural network simulator for use with matlab. Technical report.
3.Abdelbaki, H., Gelenbe, E., & El-Khamy, S.E. (1999). Random neural network decoder for error correcting codes. Neural Networks, 1999. IJCNN'99. International Joint Conference on. Vol. 5. IEEE, 3241–3245.
4.Abdelbaki, H., Gelenbe, E., & El-Khamy, S.E. (2000). Analog hardware implementation of the random neural network model. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. Vol. 4, 197–201.
5.Abdelbaki, H.M., Hussain, K., & Gelenbe, E. (2001). A laser intensity image based automatic vehicle classification system. Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE. IEEE, 460–465.
6.Adeel, A., Larijani, H., & Ahmadinia, A. (2015). Resource management and inter-cell-interference coordination in lte uplink system using random neural network and optimization. IEEE Access 3: 19631979.
7.Aguilar, J. & Gelenbe, E. (1997). Task assignment and transaction clustering heuristics for distributed systems. Information Sciences 97(1–2): 199219.
8.Anthony, M., Bartlett, P.L. (2009) Neural network learning: theoretical foundations. New York: Cambridge University Press.
9.Atalay, V., Gelenbe, E., & Yalabik, N. (1992). The random neural network model for texture generation. International Journal of Pattern Recognition and Artificial Intelligence 6(01): 131141.
10.Bakircioglu, H. & Gelenbe, E. (1998). Random neural network recognition of shaped objects in strong clutter. Applications of artificial neural networks in image processing III. Vol. 3307. International Society for Optics and Photonics, 22–29.
11.Bakırcıoğlu, H. & Koçak, T. (2000). Survey of random neural network applications. European Journal of Operational Research 126(2): 319330.
12.Basterrech, S., Mohammed, S., Rubino, G., & Soliman, M. (2009). Levenberg-marquardt training algorithms for random neural networks. The Computer Journal 54(1): 125135.
13.Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., & Zieba, K. (Apr. 2016). End to End Learning for Self-Driving Cars, ArXiv e-prints.
14.Bousquet, O. & Bottou, L. (2008). The tradeoffs of large scale learning. Advances in neural information processing systems, 161–168.
15.Brun, O., Wang, L., & Gelenbe, E. (2016). Big data for autonomic intercontinental overlays. IEEE Journal on Selected Areas in Communications 34(3): 575583.
16.Brun, O., Yin, Y., Gelenbe, E., Kadioglu, Y.M., Augusto-Gonzalez, J., & Ramos, M. (2018). Deep learning with dense random neural networks for detecting attacks against iot-connected home environments. Security in Computer and Information Sciences: First International ISCIS Security Workshop 2018, Euro-CYBERSEC 2018, London, UK, February 26–27, 2018. Lecture Notes CCIS No. 821, Springer Verlag.
17.Brun, O., Yin, Y., Gelenbe, E., Kadioglu, Y., Augusto-Gonzalez, J., & Ramos, M. (2018). Deep learning with dense random neural networks for detecting attacks against iot-connected home environments. In Gelenbe, E., Campegiani, P., Czachorski, T., Katsikas, S., Komnios, I., Romano, L., & Tzovaras, D., (eds.), Recent Cybersecurity Research in Europe: Proceedings of the 2018 ISCIS Security Workshop, Imperial College London. Lecture Notes CCIS No. 821, Springer Verlag.
18.Brun, O., Yin, Y., & Gelenbe, E. Deep learning with dense random neural network for detecting attacks against iot-connected home environments, Procedia Computer Science. Vol. 134, 458 – 463, 2018, the 15th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2018) / The 13th International Conference on Future Networks and Communications (FNC-2018) / Affiliated Workshops. [Online]. Available:
19.Burks, A.W., Goldstine, H.H., & von Neumann, J. (1946). Preliminary discussion of the logical design of an electronic computing instrument. Report to the US Army Ordenance Department.
20.Cai, D., He, X., Hu, Y., Han, J., & Huang, T. (2007). Learning a spatially smooth subspace for face recognition. 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 1–7.
21.Cambria, E., Huang, G.-B., Kasun, L.L.C., Zhou, H., Vong, C.M., Lin, J., Yin, J., Cai, Z., Liu, Q., Li, K., Leung, V.C.M., Feng, L., Ong, Y.-S., Lim, M.-H., Akusok, A., Lendasse, A., Corona, F., Nian, R., Miche, Y., Gastaldo, P., Zunino, R., Decherchi, S., Yang, X., Mao, K., Oh, B.-S., Jeon, J., Toh, K.-A., Teoh, A.B.J., Kim, J., Yu, H., Chen, Y., & Liu, J. (2013). Extreme learning machines [trends & controversies]. IEEE Intelligent Systems 28(6): 3059. [Online]. Available:
22.Carnevale, N.T. & Hines, M.L. (2006). The NEURON book. New York: Cambridge University Press.
23.çerkez, C., Aybay, I., & Halici, U. (1997). A digital neuron realization for the random neural network model. Neural Networks, 1997. International Conference on. Vol. 2. IEEE, 1000–1004.
24.Chang, C.-C. & Lin, C.-J. (2011). Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3): 27.
25.Cheng, H.-P., Wen, W., Song, C., Liu, B., Li, H., & Chen, Y. (2016). Exploring the optimal learning technique for ibm truenorth platform to overcome quantization loss. Nanoscale Architectures (NANOARCH), 2016 IEEE/ACM International Symposium on. IEEE, 185–190.
26.Cramer, C. & Gelenbe, E. (2000). Video quality and traffic qos in learning-based subsampled and receiver-interpolated video sequences. IEEE Journal on Selected Areas in Communications 18(2): 150167. [Online]. Available:
27.Cramer, C., Gelenbe, E., & Bakircloglu, H. (1996). Low bit-rate video compression with neural networks and temporal subsampling. Proceedings of the IEEE 84(10): 15291543.
28.Cramer, C., Gelenbe, E., & Gelenbe, P. (1998). Image and video compression. IEEE Potentials 17(1): 2933.
29.Cramer, C., Gelenbe, E., & Bakircioglu, H. (1996). Video compression with random neural networks. Neural Networks for Identification, Control, Robotics, and Signal/Image Processing, 1996. Proceedings., International Workshop on. IEEE, 476–484.
30.Davison, A., Brüderle, D., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., & Yger, P. (2009). Pynn: a common interface for neuronal network simulators.
31.Diehl, P.U., Pedroni, B.U., Cassidy, A., Merolla, P., Neftci, E., & Zarrella, G. (2016). Truehappiness: Neuromorphic emotion recognition on truenorth. Neural Networks (IJCNN), 2016 International Joint Conference on. IEEE, 4278–4285.
32.Ding, C., Li, T., Peng, W., & Park, H. (2006). Orthogonal nonnegative matrix t-factorizations for clustering. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 126–135.
33.Ding, C.H., He, X., & Simon, H.D. (2005). On the equivalence of nonnegative matrix factorization and spectral clustering. SDM. Vol. 5. SIAM, 606610.
34.Dominguez-Morales, J.P., Jimenez-Fernandez, A., Rios-Navarro, A., Cerezuela-Escudero, E., Gutierrez-Galan, D., Dominguez-Morales, M.J., & Jimenez-Moreno, G. (2016). Multilayer spiking neural network for audio samples classification using spinnaker. International Conference on Artificial Neural Networks. Springer, 45–53.
35.Esser, S.K., Andreopoulos, A., Appuswamy, R., Datta, P., Barch, D., Amir, A., Arthur, J., Cassidy, A., Flickner, M., Merolla, P. et al. (2013). Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores. Neural Networks (IJCNN), The 2013 International Joint Conference on. IEEE, 1–10.
36.Esser, S.K., Appuswamy, R., Merolla, P., Arthur, J.V., & Modha, D.S. (2015). Backpropagation for energy-efficient neuromorphic computing. Advances in Neural Information Processing Systems, 1117–1125.
37.Esser, S.K., Merolla, P.A., Arthur, J.V., Cassidy, A.S., Appuswamy, R., Andreopoulos, A., Berg, D.J., McKinstry, J.L., Melano, T., Barch, D.R. et al. (2016). Convolutional networks for fast, energy-efficient neuromorphic computing. Proceedings of the National Academy of Sciences 113: 201604850.
38.Fourneau, J.-M. & Gelenbe, E. (2017). G-networks with adders. Future Internet 9(3), 34.
39.François, F. & Gelenbe, E. (2016). Towards a cognitive routing engine for software defined networks. ICC 2016. IEEE, 1–6.
40.François, F. & Gelenbe, E. (2016). Optimizing secure sdn-enabled inter-data centre overlay networks through cognitive routing. MASCOTS 2016, IEEE Computer Society. IEEE, 283–288.
41.Furber, S.B., Galluppi, F., Temple, S., & Plana, L.A. (2014). The spinnaker project. Proceedings of the IEEE 102(5): 652665.
42.Gelenbe, E. (1989). Random neural networks with negative and positive signals and product form solution. Neural Computation 1(4): 502510.
43.Gelenbe, E. (1989). Réseaux stochastiques ouverts avec clients négatifs et positifs, et réseaux neuronaux. Comptes-Rendus Acad. Sciences de Paris, Série 2 309: 979982.
44.Gelenbe, E. (1990). Reseaux neuronaux aléatoires stables. Comptes Rendus de l'Académie des Sciences. Série 2 310(3): 177180.
45.Gelenbe, E. (1990). Stability of the random neural network model. Neural Computation 2(2): 239247.
46.Gelenbe, E. (1991). Product-form queueing networks with negative and positive customers. Journal of Applied Probability 28(3): 656663.
47.Gelenbe, E. (1993). G-networks by triggered customer movement. Journal of Applied Probability 30(3): 742748.
48.Gelenbe, E. (1993). G-networks with signals and batch removal. Probability in the Engineering and Informational Sciences 7(3): 335342.
49.Gelenbe, E. (1993). Learning in the recurrent random neural network. Neural Computation 5: 154164.
50.Gelenbe, E. (1994). G-networks: a unifying model for neural and queueing networks. Annals of Operations Research 48(5): 433461.
51.Gelenbe, E. (2007). Steady-state solution of probabilistic gene regulatory networks. Physical Review E 76: 031903-1031903-8.
52.Gelenbe, E. (2009). Steps toward self-aware networks. Communications of the ACM 52(7): 6675.
53.Gelenbe, E. (2012). Natural computation. The Computer Journal 55(7): 848851.
54.Gelenbe, E. & Abdelrahman, O.H. (2018). An energy packet network model for mobile networks with energy harvesting. Nonlinear Theory and Its Applications, IEICE 9(3): 115.
55.Gelenbe, E. & Ceran, E.T. (2016). Energy packet networks with energy harvesting. IEEE Access 4: 13211331.
56.Gelenbe, E. & Cramer, C. (1998). Oscillatory corticothalamic response to somatosensory input. Bio Systems 48(1–3): 6775.
57.Gelenbe, E. & Fourneau, J.-M. (1999). Random neural networks with multiple classes of signals. Neural Computation 11(4): 953963.
58.Gelenbe, E. & Hussain, K.F. (2002). Learning in the multiple class random neural network. IEEE Transactions on Neural Networks 13(6): 12571267.
59.Gelenbe, E. & Kazhmaganbetova, Z. (2014). Cognitive packet network for bilateral asymmetric connections. IEEE Trans. Industrial Informatics 10(3): 17171725.
60.Gelenbe, E. & Marin, A. (2015). Interconnected wireless sensors with energy harvesting. Analytical and Stochastic Modelling Techniques and Applications - 22nd International Conference, ASMTA 2015, Albena, Bulgaria, May 26–29, 2015. Proceedings, 87–99.
61.Gelenbe, E. & Morfopoulou, C. (2010). A framework for energy-aware routing in packet networks. The Computer Journal 54(6): 850859.
62.Gelenbe, E. & Pujolle, G. (1987). Introduction to Networks of Queues. Translation of “Introduction aux Réseaux de Files d'Attente”, Eyrolles, Paris, 1982, published by John Wiley Ltd, New York and Chichester.
63.Gelenbe, E. & Schassberger, R. (1992). Stability of product form g-networks. Probability in the Engineering and Informational Sciences 6(3): 271276.
64.Gelenbe, E. & Sungur, M. (1994). Random network learning and image compression. Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on. Vol. 6. IEEE, 3996–3999.
65.Gelenbe, E. & Timotheou, S. (2008). Random neural networks with synchronized interactions. Neural Computation 20(9): 23082324.
66.Gelenbe, E. & Yin, Y. (2016). Deep learning with random neural networks. 2016 International Joint Conference on Neural Networks (IJCNN), 1633–1638.
67.Gelenbe, E. & Yin, Y. (2016). Deep learning with random neural networks. SAI Intelligent Systems Conference 2016, 907–912.
68.Gelenbe, E. & Yin, Y. (2017). Deep learning with dense random neural networks. International Conference on Man–Machine Interactions. Springer, 3–18.
69.Gelenbe, E., Glynn, P., & Sigman, K. (1991). Queues with negative arrivals. Journal of Applied Probability 28(1): 245250.
70.Gelenbe, E., Stafylopatis, A., & Likas, A. (1991). Associative memory operations of the random neura network. Proceedings of the International Conference on Artificial Neural Networks, 307–312.
71.Gelenbe, E., Feng, Y., & Krishnan, K.R.R. (1996). Neural network methods for volumetric magnetic resonance imaging of the human brain. Proceedings of the IEEE 84(10): 14881496.
72.Gelenbe, E., Sungur, M., Cramer, C., & Gelenbe, P. (1996). Traffic and video quality with adaptive neural compression. Multimedia Systems 4(6): 357369. [Online]. Available:
73.Gelenbe, E., Ghanwani, A., & Srinivasan, V. (1997). Improved neural heuristics for multicast routing. IEEE Journal on Selected Areas in Communications 15(2): 147155.
74.Gelenbe, E., Mao, Z., & Li, Y. (Aug 1999). Approximation by random networks with bounded number of layers. Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), 166–175.
75.Gelenbe, E., Mao, Z., & Li, Y. (1999). Function approximation with spiked random networks. IEEE Transactions on Neural Networks 10(1): 39.
76.Gelenbe, E., Hussain, K.F., & Abdelbaki, H. (2000). Random neural network texture model. Applications of Artificial Neural Networks in Image Processing V . Vol. 3962. International Society for Optics and Photonics, 104–112.
77.Gelenbe, E., Koçak, T., & Wang, R. (2004). Wafer surface reconstruction from top–down scanning electron microscope images. Microelectronic Engineering 75(2): 216233.
78.Gelenbe, E., Mao, Z.-H., & Li, Y.-D. (2004). Function approximation by random neural networks with a bounded number of layers. Differential Equations and Dynamical Systems 12(1): 143170.
79.Georgiopoulos, M., Li, C., & Kocak, T. (2011). Learning in the feed-forward random neural network: a critical review. Performance Evaluation 68(4): 361384, g-Networks and their Applications. [Online]. Available:
80.Gewaltig, M.-O. & Diesmann, M. (2007). Nest (neural simulation tool). Scholarpedia 2(4): 1430.
81.Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Aistats. Vol. 9, 249–256.
82.Glorot, X., Bordes, A., & Bengio, Y., Deep sparse rectifier neural networks, In Gordon, G. J. & Dunson, D. B., (eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11), vol. 15. Journal of Machine Learning Research - Workshop and Conference Proceedings, 2011, 315–323. [Online]. Available:
83.Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., & Weinberger, K. Q., (eds.), Advances in Neural Information Processing Systems 27, Curran Associates, Inc., 2672–2680. [Online]. Available:
84.Goodman, D. & Brette, R. (2008). Brian: a simulator for spiking neural networks in python.
85.Grenet, I., Yin, Y., Comet, J.-P., & Gelenbe, E. (2018). Machine learning to predict toxicity of compounds. 27th Annual International Conference on Artificial Neural Networks, ICANN18, accepted for publication. Springer Verlang.
86.He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778.
87.Heeger, D. (2000). Poisson model of spike generation. Handout, University of Standford 5: 113.
88.Hinton, G.E. & Salakhutdinov, R.R. (2006). Reducing the dimensionality of data with neural networks. Science 313(5786): 504507.
89.Hinton, G.E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation 18(7): 15271554.
90.Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks 4(2): 251257.
91.Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks 2(5): 359366.
92.Hoyer, P.O. (2002). Non-negative sparse coding. Neural Networks for Signal Processing, 2002. Proceedings of the 2002 12th IEEE Workshop on. IEEE, 557–565.
94.Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: theory and applications. Neurocomputing 70(1): 489501.
95.Hussain, K.F. & Moussa, G.S. (2005). Laser intensity vehicle classification system based on random neural network. Proceedings of the 43rd annual Southeast regional conference-Volume 1. ACM, 31–35.
96.Javed, A., Larijani, H., Ahmadinia, A., & Emmanuel, R. (2017). Random neural network learning heuristics. Probability in the Engineering and Informational Sciences 31(4): 436456.
97.Javed, A., Larijani, H., Ahmadinia, A., & Gibson, D. (2017). Smart random neural network controller for hvac using cloud computing technology. IEEE Transactions on Industrial Informatics 13(1): 351360.
98.Jo, S., Yin, J., & Mao, Z.-H. (2005). Random neural networks with state-dependent firing neurons. IEEE Transactions on Neural Networks 16(4): 980983.
99.Kadioglu, Y.M. & Gelenbe, E. (2018). Product form solution for cascade networks with intermittent energy. IEEE Systems Journal. doi: 10.1109/JSYST.2018.2854838.
100.Kasun, L.L.C., Zhou, H., & Huang, G.-B. (2013). Representational learning with extreme learning machine for big data. IEEE Intelligent Systems 28(6): 3134.
101.Kim, H. & Gelenbe, E. (2012). Stochastic gene expression modeling with hill function for switch-like gene responses. IEEE/ACM Trans. Comput. Biology Bioinform. 9(4): 973979. [Online]. Available:
102.Knight, J., Voelker, A.R., Mundy, A., Eliasmith, C., & Furber, S. (2016). Efficient spinnaker simulation of a heteroassociative memory using the neural engineering framework. Neural Networks (IJCNN), 2016 International Joint Conference on. IEEE, 5210–5217.
103.Kocak, T., Seeber, J., & Terzioglu, H. (2003). Design and implementation of a random neural network routing engine. IEEE Transactions on Neural Networks 14(5): 11281143.
104.Krizhevsky, A. & Hinton, G. (2009). Learning multiple layers of features from tiny images.
105.LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11): 22782324.
106.LeCun, Y., Huang, F.J., & Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. Vol. 2. IEEE, II–97–104.
107.LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature 521(7553): 436444.
108.Lee, D.D. & Seung, H.S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature 401(6755): 788791.
109.Leshno, M., Lin, V.Y., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6(6): 861867.
110.Lichman, M. (2013). UCI machine learning repository. [Online]. Available:
111.Likas, A. & Stafylopatis, A. (2000). Training the random neural network using quasi-newton methods. European Journal of Operational Research 126(2): 331339. [Online]. Available:
112.Liu, X., Yan, S., & Jin, H. (2010). Projective nonnegative graph embedding. Image Processing, IEEE Transactions on 19(5): 11261137.
113.Lu, R. & Shen, Y. (2006). Image segmentation based on random neural network model and gabor filters. Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the. IEEE, 6464–6467.
114.Makhzani, A., Shlens, J., Jaitly, N., & Goodfellow, I.J. (2015). Adversarial autoencoders. CoRR, abs/1511.05644, 116. [Online]. Available:
115.McCulloch, W.S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics 5(4): 115133. [Online]. Available:
116.Metropolis, N. & Ulam, S. (1949). The monte carlo method. Journal of the American Statistical Association 44(247): 335341.
117.Öke, G. & Loukas, G. (2007). A denial of service detector based on maximum likelihood detection and the random neural network. The Computer Journal 50(6): 717727. [Online]. Available:
118.Park, J. & Sandberg, I.W. (1991). Universal approximation using radial-basis-function networks. Neural Computation 3(2): 246257.
119.Park, J. & Sandberg, I.W. (1993). Approximation and radial-basis-function networks. Neural Computation 5(2): 305316.
120.Paudel, I., Pokhrel, J., Wehbi, B., Cavalli, A., & Jouaber, B. (Sept 2014). Estimation of video qoe from mac parameters in wireless network: A random neural network approach. 2014 14th International Symposium on Communications and Information Technologies (ISCIT), 51–55.
121.Pavlus, J. (2015). The search for a new machine. Scientific American 312(5): 5863.
122.Phan, H.T.T., Sternberg, M.J.E., & Gelenbe, E. (2012). Aligning protein-protein interaction networks using random neural networks. 2012 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2012, Philadelphia, PA, USA, October 4–7, 2012, 1–6. [Online]. Available:
123.Preissl, R., Wong, T.M., Datta, P., Flickner, M., Singh, R., Esser, S.K., Risk, W.P., Simon, H.D., & Modha, D.S. (2012). Compass: a scalable simulator for an architecture for cognitive computing. Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. IEEE Computer Society Press, 54.
124.Qin, Z., Yu, F., Shi, Z., & Wang, Y. (2006). Adaptive inertia weight particle swarm optimization. International conference on Artificial Intelligence and Soft Computing. Springer, 450–459.
125.Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 116. [Online]. Available:
126.Radhakrishnan, K. & Larijani, H. (2011). Evaluating perceived voice quality on packet networks using different random neural network architectures. Performance Evaluation 68(4): 347360, g-Networks and their Applications. [Online]. Available:
127.Riedmiller, M. & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: the rprop algorithm. IEEE International Conference on Neural Networks. Vol. 1, 586–591.
128.Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review 65(6), 386.
129.Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain mechanisms, DTIC Document, Tech. Rep.
130.Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1985). Learning internal representations by error propagation, California Univ San Diego La Jolla Inst for Cognitive Science, Tech. Rep.
131.Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. In Rumelhart, D. E., McClelland, J. L., & C. PDP Research Group, (eds.), ch. Learning Internal Representations by Error Propagation. Vol. 1, Cambridge, MA, USA: MIT Press, 318–362. [Online]. Available:
132.Sakellari, G. & Gelenbe, E. (2010). Demonstrating cognitive packet network resilience to worm attacks. 17th ACM conference on Computer and Communications Security, Proceedings of the. ACM, 636–638.
133.Scarselli, F. & Tsoi, A.C. (1998). Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results. Neural Networks 11(1): 1537.
134.Serrano, W. & Gelenbe, E. (2018). The random neural network in a neurocomputing application for web search. Neurocomputing 280: 123134.
135.Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature 529(7587): 484489.
136.Springenberg, J.T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: The all convolutional net, arXiv preprint arXiv:1412.6806.
137.Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15(1), 19291958.
138.Stinchcombe, M. & White, H. (1989). Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions. International 1989 Joint Conference on Neural Networks. Vol. 1, 613–617.
139.Storn, R. & Price, K. (1997). Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4): 341359. [Online]. Available:
140.Tang, J., Deng, C., & Huang, G.-B. (2016). Extreme learning machine for multilayer perceptron. IEEE Transactions on Neural Networks and Learning Systems 27(4): 809821.
141.Teke, A. & Atalay, V. (2006). Texture classification and retrieval using the random neural network model. Computational Management Science 3(3): 193205.
142.Timotheou, S. (2008). Nonnegative least squares learning for the random neural network. International Conference on Artificial Neural Networks. Springer, 195–204.
143.Timotheou, S. (2009). A novel weight initialization method for the random neural network. Neurocomputing 73(1–3): 160168.
144.Timotheou, S. (2010). The random neural network: a survey. The Computer Journal 53(3): 251267.
145.Vlontzos, A. (May 2017). The rnn-elm classifier. 2017 International Joint Conference on Neural Networks (IJCNN), 2702–2707.
146.Wachsmuth, E., Oram, M., & Perrett, D. (1994). Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cerebral Cortex 4(5): 509522.
147.Wang, L. & Gelenbe, E. (2016). Real-time traffic over the cognitive packet network, 3–21.
148.Wang, L. & Gelenbe, E. (2018). Adaptive dispatching of tasks in the cloud. IEEE Transactions on Cloud Computing 6(1): 3345.
149.Wang, Y.-X. & Zhang, Y.-J. (2013). Nonnegative matrix factorization: a comprehensive review. IEEE Transactions on Knowledge and Data Engineering 25(6): 13361353.
150.Wen, W., Wu, C., Wang, Y., Nixon, K., Wu, Q., Barnell, M., Li, H., & Chen, Y. (2016). A new learning method for inference accuracy, core occupation, and performance co-optimization on truenorth chip. Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 1–6.
151Wikipedia contributors, “Perceptron,” 2018, [Online; accessed 25-Sep-2018]. [Online]. Available:
152.Wilson, D.R. & Martinez, T.R. (1996). Heterogeneous radial basis function networks. Proceedings of the International Conference on Neural networks (ICNN 96), 1263–1267.
153.Yin, Y. (2018). Random neural networks for deep learning, Imperial College London, PhD Thesis, available in
154.Yin, Y. & Gelenbe, E. (2016). Deep learning in multi-layer architectures of dense nuclei, arXiv preprint arXiv:1609.07160.
155.Yin, Y. & Gelenbe, E. (Sept. 2016). Nonnegative autoencoder with simplified random neural network, ArXiv e-prints.
156.Yin, Y. & Gelenbe, E. (May 2017). Single-cell based random neural network for deep learning. 2017 International Joint Conference on Neural Networks (IJCNN), 86–93.
157.Yin, Y. & Gelenbe, E. (2018). A classifier based on spiking random neural network function approximator, Preprint available in
158.Yin, Y. & Zhang, Y. (2012). Weights and structure determination of chebyshev-polynomial neural networks for pattern classification. Software 11, 048.
159.Yin, Y., Wang, L., & Gelenbe, E. (May 2017). Multi-layer neural networks for quality of service oriented server-state classification in cloud servers. 2017 International Joint Conference on Neural Networks (IJCNN), 1623–1627.
160.Yunong, Z., Kene, L., & Ning, T. (2009). An rbf neural network classifier with centers, variances and weights directly determined. Computing Technology and Automation 3, 002.
161.Zeiler, M.D. (2012). ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701, 16. [Online]. Available:
162.Zhang, Y., Yin, Y., Yu, X., Guo, D., & Xiao, L. (2012). Pruning-included weights and structure determination of 2-input neuronet using chebyshev polynomials of class 1. Intelligent Control and Automation (WCICA), 2012 10th World Congress on. IEEE, 700–705.
163.Zhang, Y., Yin, Y., Guo, D., Yu, X., & Xiao, L. (2014). Cross-validation based weights and structure determination of chebyshev-polynomial neural networks for pattern classification. Pattern Recognition 47(10): 34143428.
164.Zhang, Y., Yu, X., Guo, D., Yin, Y., & Zhang, Z. (2014). Weights and structure determination of multiple-input feed-forward neural network activated by chebyshev polynomials of class 2 via cross-validation. Neural Computing and Applications 25(7–8): 17611770.
165.Zhu, X. (2005). Semi-supervised learning literature survey.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Probability in the Engineering and Informational Sciences
  • ISSN: 0269-9648
  • EISSN: 1469-8951
  • URL: /core/journals/probability-in-the-engineering-and-informational-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed