1.
Athreya K.B. & Majumdar M. (2003). Estimating the stationary distribution of a Markov chain. Economic Theory
21(2): 729–742.

2.
Błaszczyszyn B. & Sigman K. (1999). Risk and duality in multidimensions. Stochastic Processes and their Applications
83: 331–356.

3.
Cox J.T. & Rösler U. (1984). A duality relation for entrance and exit laws for Markov processes. Stochastic Processes and their Applications
16: 141–156.

4.
Dette H., Fill J.A., Pitman J. & Studden W.J. (1997). Wall and Siegmund duality relations for birth and death chains with reflecting barrier. Journal of Theoretical Probability
10(2): 349–374.

5.
Diaconis P. & Fill J.A. (1990). Strong stationary times via a new form of duality. The Annals of Probability
18(4): 1483–1522.

6.
Ewens W. (2004). Mathematical population genetics. New York: Springer-Verlag.

7.
Falin G.I. (1988). Monotonicity of random walks in partially ordered sets. Russian Mathematical Surveys
43(2): 167–168.

8.
Feller W. (1951). Diffusion processes in genetics. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. The Regents of the University of California, pp. 227–246.

9.
Fill J.A. & Lyzinski V. (2016). Strong stationary duality for diffusion processes. Journal of Theoretical Probability
29(4): 1298–1338.

10.
Foley R.D. & McDonald D.R. (2005). Large deviations of a modified Jackson network: Stability and rough asymptotics. The Annals of Applied Probability
15(1B): 519–541.

11.
Harrison J.M. & Williams R.J. (1987). Multidimensional reflected Brownian motions having exponential stationary distributions. The Annals of Probability
15(1): 115–137.

12.
Huillet T. (2010). Siegmund duality with applications to the neutral Moran model conditioned on never being absorbed. Journal of Physics A: Mathematical and Theoretical
43(37): 1–14.

13.
Huillet T. & Martínez S. (2016). On Möbius duality and coarse-graining. Journal of Theoretical Probability
29(1): 143–179.

14.
Hunter B., Krinik A.C., Nguyen C., Switkes J.M. & Von Bremen H.F. (2008). Gamblers ruin with catastrophes and windfalls. Journal of Statistical Theory and Practice
2(2): 199–219.

15.
Lee C.E., Ozdaglar A. & Shah D. (2013). Approximating the stationary probability of a single state in a Markov chain. ArXiv preprint arXiv:1312.1986, pp. 1–55.

16.
Liggett T.M. (2004). Interacting Particle Systems. Berlin, Heidelberg: Springer-Verlag.

17.
Lindley D.V. (1952). The theory of queues with a single server. Mathematical Proceedings of the Cambridge Philosophical Society
48(2): 277–289.

18.
Lorek P. (2007). Speed of convergence to stationarity for stochastically monotone Markov chains. PhD thesis, University of Wrocław, Wrocław, Poland.

19.
Lorek P. (2017). Generalized Gambler's ruin problem: Explicit formulas via Siegmund duality. Methodology and Computing in Applied Probability
19(2): 603–613.

20.
Lorek P. & Markowski P. (2017). Monotonicity requirements for efficient exact sampling with Markov chains. To appear in Markov Processes and Related Fields.

21.
Lorek P. & Szekli R. (2012). Strong stationary duality for Möbius monotone Markov chains. Queueing Systems
71(1-2): 79–95.

22.
Lorek P. & Szekli R. (2016). Strong stationary duality for Möbius monotone Markov chains: Examples. Probability and Mathematical Statistics
36(1): 75–97.

23.
Miclo L. (2017). Strong stationary times for one-dimensional diffusions. Annales de l'Institut Henri Poincaré Probability Statistics
53(7): 957–996.

24.
Parzen E. (1962). Stochastic Processes. San Francisco: Holden-Day, Inc.

25.
Propp J.G. & Wilson D.B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms
9: 223–252.

26.
Rota G.-C. (1964). On the foundations of combinatorial theory I. Theory of Möbius functions. Probability Theory and Related Fields
368: 340–368.

27.
Siegmund D. (1976). The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes. The Annals of Probability
4(6): 914–924.