1.
Athreya, K.B. & Majumdar, M. (2003). Estimating the stationary distribution of a Markov chain. Economic Theory
21(2): 729–742.

2.
Błaszczyszyn, B. & Sigman, K. (1999). Risk and duality in multidimensions. Stochastic Processes and their Applications
83: 331–356.

3.
Cox, J.T. & Rösler, U. (1984). A duality relation for entrance and exit laws for Markov processes. Stochastic Processes and their Applications
16: 141–156.

4.
Dette, H., Fill, J.A., Pitman, J. & Studden, W.J. (1997). Wall and Siegmund duality relations for birth and death chains with reflecting barrier. Journal of Theoretical Probability
10(2): 349–374.

5.
Diaconis, P. & Fill, J.A. (1990). Strong stationary times via a new form of duality. The Annals of Probability
18(4): 1483–1522.

6.
Ewens, W. (2004). Mathematical population genetics. New York: Springer-Verlag.

7.
Falin, G.I. (1988). Monotonicity of random walks in partially ordered sets. Russian Mathematical Surveys
43(2): 167–168.

8.
Feller, W. (1951). Diffusion processes in genetics. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. The Regents of the University of California, pp. 227–246.

9.
Fill, J.A. & Lyzinski, V. (2016). Strong stationary duality for diffusion processes. Journal of Theoretical Probability
29(4): 1298–1338.

10.
Foley, R.D. & McDonald, D.R. (2005). Large deviations of a modified Jackson network: Stability and rough asymptotics. The Annals of Applied Probability
15(1B): 519–541.

11.
Harrison, J.M. & Williams, R.J. (1987). Multidimensional reflected Brownian motions having exponential stationary distributions. The Annals of Probability
15(1): 115–137.

12.
Huillet, T. (2010). Siegmund duality with applications to the neutral Moran model conditioned on never being absorbed. Journal of Physics A: Mathematical and Theoretical
43(37): 1–14.

13.
Huillet, T. & Martínez, S. (2016). On Möbius duality and coarse-graining. Journal of Theoretical Probability
29(1): 143–179.

14.
Hunter, B., Krinik, A.C., Nguyen, C., Switkes, J.M. & Von Bremen, H.F. (2008). Gamblers ruin with catastrophes and windfalls. Journal of Statistical Theory and Practice
2(2): 199–219.

15.
Lee, C.E., Ozdaglar, A. & Shah, D. (2013). Approximating the stationary probability of a single state in a Markov chain. ArXiv preprint arXiv:1312.1986, pp. 1–55.

16.
Liggett, T.M. (2004). Interacting Particle Systems. Berlin, Heidelberg: Springer-Verlag.

17.
Lindley, D.V. (1952). The theory of queues with a single server. Mathematical Proceedings of the Cambridge Philosophical Society
48(2): 277–289.

18.
Lorek, P. (2007). Speed of convergence to stationarity for stochastically monotone Markov chains. PhD thesis, University of Wrocław, Wrocław, Poland.

19.
Lorek, P. (2017). Generalized Gambler's ruin problem: Explicit formulas via Siegmund duality. Methodology and Computing in Applied Probability
19(2): 603–613.

20.
Lorek, P. & Markowski, P. (2017). Monotonicity requirements for efficient exact sampling with Markov chains. To appear in Markov Processes and Related Fields.

21.
Lorek, P. & Szekli, R. (2012). Strong stationary duality for Möbius monotone Markov chains. Queueing Systems
71(1-2): 79–95.

22.
Lorek, P. & Szekli, R. (2016). Strong stationary duality for Möbius monotone Markov chains: Examples. Probability and Mathematical Statistics
36(1): 75–97.

23.
Miclo, L. (2017). Strong stationary times for one-dimensional diffusions. Annales de l'Institut Henri Poincaré Probability Statistics
53(7): 957–996.

24.
Parzen, E. (1962). Stochastic Processes. San Francisco: Holden-Day, Inc.

25.
Propp, J.G. & Wilson, D.B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms
9: 223–252.

26.
Rota, G.-C. (1964). On the foundations of combinatorial theory I. Theory of Möbius functions. Probability Theory and Related Fields
368: 340–368.

27.
Siegmund, D. (1976). The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes. The Annals of Probability
4(6): 914–924.