1.Abbey H. (1952). An examination of the Reed–Frost theory of epidemics. Human Biology 24: 201.

2.Bailey N.T.J. (1975). The mathematical theory of infectious diseases and its applications. London: Griffin.

3.Ball F. & Clancy D. (1995). The final outcome and temporal solution of carrier-borne epidemic model. Journal of Applied Probability 32: 304–315.

4.Ball F. & Clancy D. (1995). The final outcome of an epidemic model with several different types of infective in a large population. Journal of Applied Probability 32: 579–590.

5.Becker N.G. & Dietz K. (1995). The effect of the household distribution on transmission and control of highly infectious diseases. Mathematical Biosciences 127: 207–219.

6.Becker N.G. & Utev S. (2002). Protective vaccine efficacy when vaccine response is random. Biometrical Journal 44: 29–42.

7.Chang C.-S., Shanthikumar J.G. & Yao D.D. (1994). Stochastic convexity and stochastic Majorization. In Yao D.D. (ed.), Stochastic modeling and analysis of manufacturing systems. New York: Springer-Verlag.

8.Denuit M., Lefèvre C. & Utev S. (1999). Generalized stochastic convexity and stochastic orderings of mixtures. Probability in the Engineering and Informational Sciences 13: 275–291.

9.Diekmann O. & Heesterbeek J.A.P. (2000). Mathematical epidemiology of infectious diseases. Chichester, UK: Wiley.

10.Donnelly P. (1993). The correlation structure of epidemic models. Mathematical Biosciences 117: 49–75.

11.Escudero L.F. & Ortega E.M. (2008). Actuarial comparisons of aggregate claims with randomly right truncated claims. Insurance: Mathematics and Economics 43: 255–262.

12.Escudero L.F., Ortega E.M. & Alonso J. (2009). Variability comparisons for some mixture models with stochastic environments in biosciences and engineering. Stochastic Environmental Research and Risk Assessment, onlinefirst, doi:10.1007/s00477-009-0310-6.

13.Fernández-Ponce J.M., Ortega E.M. & Pellerey F. (2008). Convex comparisons for random sums in random environments and applications. Probability in the Engineering and Informational Sciences 22: 389–413.

14.Greenwood M. (1931). On the statistical measure of infectiousness, Journal of Hygene Cambridge 31: 336.

15.Haas C.N. (2002). Conditional dose-response relationships for microorganisms: development and application. Risk Analysis 22: 455–463.

16.Helander M.E. & Batta R. (1994). A discrete transmission model for HIV. In Kaplan E.H. & Brandeu M.I. (eds.), Modeling the AIDS epidemic: Planning, policy and prediction. New York: Raven Press, pp. 585–611.

17.Isham V. (2005). Stochastic models for epidemics: current issues and developments. In: Celebrating Statistics: Papers in honor of Sir David Cox on his 80th Birthday. Oxford: Oxford University Press.

18.Joe H. (1997). Multivariate models and dependence concepts. London: Chapman and Hall.

19.Kegan B. & West R.W. (2005). Modeling the simple epidemics with deterministic differential equations and random initial conditions. Mathematical Biosciences 195: 179–193.

20.Lefèvre C. (2005). SIR epidemic models. In: Armitage P. & Colton T. (eds.), Encyclopedia of biostatistics. vol. 7, New York: Wiley, pp. 4960–4966.

21.Lefèvre C. & Malice M.P. (1988). Comparisons for carrier-borne epidemics in heterogeneous and homogeneous populations. Journal of Applied Probability 25: 663–674.

22.Lefèvre C. & Picard P. (1990). A non-standard family of polynomials and the final size distribution of Reed–Frost epidemic processes. Advances Applied Probability 22: 25–48.

23.Lefèvre C. & Picard P. (1996). Collective epidemic models. Mathematical Biosciences 134: 51–70.

24.Lefèvre C. & Picard P. (2005). Nonstationarity and randomization in the Reed–Frost epidemic model. Journal of Applied Probability 42: 950–963.

25.Lefèvre C. & Utev S. (1996). Comparing sums of exchangeable Bernoulli random variables. Journal of Applied Probability 33: 285–310.

26.Lefèvre C. & Utev S. (1998). On order-preserving properties of probability metrics. Journal of Theoretical Probability 11: 907–920.

27.Lloyd-Smith J.O., Schreiber S.J., Kopp P.E. & Getz W.M. (2005). Superspreading and the effect of individual variation disease emergence. Nature 438: 355–359.

28.Malice M.P. & Lefèvre C. (1988). On some effects of variability in the Weiss epidemic model. Communications in Statistics- Theory and Methods 17: 3723–3731.

29.Marinacci M. & Montrucchio L. (2005). Ultramodular functions. Mathematics of Operations Research 30: 311–332.

30.Marshall A.W. & Olkin I. (1979). Inequalities: Theory of Majorization and Its Applications. New York: Academic Press.

31.Meester L.E. & Shanthikumar J.G. (1993). Regularity of stochastic processes. A theory based on directional convexity. Probability in the Engineering and Informational Sciences 7: 343–360.

32.Meester L.E. & Shanthikumar J.G. (1999). Stochastic convexity on general space. Mathematics of Operations Research 24: 472–494.

33.Menezes R.X., Ortega N.R.S. & Massad E. (2004). A Reed–Frost model taking into account uncertainties in the diagnosis of the infection. Bulletin of Mathematical Biology 66: 689–706.

34.Müller A. & Scarsini M. (2000). Some remarks on the supermodular order. Journal of Multivariate Analysis 73: 107–119.

35.Müller A. & Scarsini M. (2001). Stochastic comparisons of random vectors with a common copula. Mathematics of Operations Research 26: 723–740.

36.Nelsen R.B. (1999). An Introduction to Copulas. Springer: New York.

37.O'Neill P.D. & Becker N.G. (2001). Inference for an epidemic when susceptibility varies. Biostatistics 2: 99–108.

38.Ortega N.R.S., Santos F.S., Zanetta D.M.T. & Massad E. (2008). A fuzzy Reed–Frost Model for epidemic spreading. Bulletin of Mathematical Biology 70: 1925–1936.

39.Picard P. & Lefévre C. (1991). The dimension of the Reed–Frost epidemic models with randomized susceptibility levels. Mathematical Biosciences 107: 225–233.

40.Ross S.M. (1996). Stochastic processes, 2nd ed.New York: Wiley.

41.Rüschendorf L. (2004). Comparison of multivariate risks and positive dependence. Advances in Applied Probability 41: 391–406.

42.Shaked M. & Shanthikumar J.G. (1990). Parametric stochastic convexity and concavity of stochastic processes. Annals of the Institute of Statistical Mathematics 42: 509–531.

43.Shaked M. & Shanthikumar G.J. (2007). Stochastic orders New York: Springer.

44.Stoyan D. (1983). Comparisons methods for queues and other stochastic models. New York: Wiley.

45.Tong Y.L. (1997). Some majorization orderings of heterogeneity in a class of epidemics. Journal of Applied Probability 34: 84–93.

46.Tuckwell H.C. & Williams R.J. (2007). Some properties of a simple stochastic epidemic model of SIR type. Mathematical Biosciences 208: 76–97.

47.Von Bahr B. & Martin-Löf A. (1980). Threshold limit theorems for some epidemic processes. Advances in Applied Probability 12: 319–349.

48.Weiss G.H. (1965). On the spread of epidemics by carriers. Biometrics 21: 481–491.

49.Wright E.M. (1954). An inequality for convex functions. American Mathematical Monthly 61: 620–622.

50.Yi Z. & Weng C. (2006). On the correlation order. Statistics and Probability Letters 76: 1410–1416.