Hostname: page-component-65b85459fc-cljkw Total loading time: 0 Render date: 2025-10-16T18:24:20.822Z Has data issue: false hasContentIssue false

Bounds of non-real eigenvalues for eigenparameter-dependent Sturm–Liouville problems with indefinite weight

Published online by Cambridge University Press:  14 October 2025

Jinbang Feng
Affiliation:
School of Mathematics Sciences, Qufu Normal University, Qufu, China Yanxi Middle School, Jinan, China
Kun Li*
Affiliation:
School of Mathematics Sciences, Qufu Normal University, Qufu, China
Zhaowen Zheng
Affiliation:
College of Mathematics and Systems Science, Guangdong Polytechnic Normal University, Guangzhou, China
Xiaoling Hao
Affiliation:
School of Mathematics Sciences, Inner Mongolia University, Hohhot, China
*
Corresponding author: Kun Li, email: qslikun@163.com

Abstract

In this paper, the upper bounds of non-real eigenvalues of indefinite Sturm–Liouville (S-L) problems with boundary conditions depend on the eigenparameter are studied. The upper bounds of real parts, imaginary parts and absolute values of non-real eigenvalues are given under the condition that the coefficients are integrable.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Atkinson, F. V., Langer, H. and Mennicken, R., Sturm–Liouville problems with coefficients which depend analytically on the eigenvalue parameter, Acta Sci. Math. 57(1–4): (1993), 2544.Google Scholar
Aydemir, K. and Mukhtarov, O. S., Class of Sturm-Liouville problems with eigenparameter dependent transmission conditions, Numerical Functional Analysis and Optimization 38(10): (2017), 12601275.10.1080/01630563.2017.1316995CrossRefGoogle Scholar
Behrndt, J., Katatbeh, Q. and Trunk, C., Non-real eigenvalues of singular indefinite Sturm-Liouville operators, Proceedings of the American Mathematical Society 137(11): (2009), 37973806.10.1090/S0002-9939-09-09964-XCrossRefGoogle Scholar
Behrndt, J., Philipp, F. and Trunk, C., Bounds on the non-real spectrum of differential operators with indefinite weights, Mathematische Annalen 357(1): (2013), 185213.10.1007/s00208-013-0904-7CrossRefGoogle Scholar
Behrndt, J., Schmitz, P. and Trunk, C., Spectral bounds for singular indefinite Sturm-Liouville operators with L 1-potentials, Proceedings of the American Mathematical Society 146(9): (2018), 39353942.Google Scholar
Behrndt, J., Schmitz, P. and Trunk, C., Spectral bounds for indefinite singular Sturm-Liouville operators with uniformly locally integrable potentials, Journal of Differential Equations 267(1): (2019), 468493.CrossRefGoogle Scholar
Binding, P. and Ćurgus, B., Form domains and eigenfunction expansions for differential equations with eigenparameter dependent boundary conditions, Canadian Journal of Mathematics 54(6): (2002), 11421164.CrossRefGoogle Scholar
Binding, P., and Ćurgus, B., Riesz bases of root vectors of indefinite Sturm-Liouville problems with eigenparameter dependent boundary conditions. II, Integral Equations and Operator Theory 63(4): (2009), 473499.10.1007/s00020-009-1659-0CrossRefGoogle Scholar
Binding, P. A. and Browne, P. J., Oscillation theory for indefinite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 127(6): (1997), 11231136.10.1017/S0308210500026974CrossRefGoogle Scholar
Binding, P. A., Browne, P. J. and Seddighi, K., Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proceedings of the Edinburgh Mathematical Society 37(1): (1994), 5772.10.1017/S0013091500018691CrossRefGoogle Scholar
Binding, P. A., Browne, P. J. and Watson, B. A., Inverse spectral problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions, Journal of the London Mathematical Society 62(1): (2000), 161182.10.1112/S0024610700008899CrossRefGoogle Scholar
Binding, P. A., Browne, P. J. and Watson, B. A., Sturm-Liouville problems with boundary conditions raditionally dependent on the eigenparameter, Journal of Computational and Applied Mathematics 148(1): (2002), 147168.10.1016/S0377-0427(02)00579-4CrossRefGoogle Scholar
Boyko, O., Martynyuk, O. and Pivovarchik, V., Ambarzumian theorem for non-selfadjoint boundary value problems, Journal of Operator Theory 79(1): (2018), 213223.10.7900/jot.2017feb14.2150CrossRefGoogle Scholar
Constantin, A., A general-weighted Sturm-Liouville problem, Ann. Sc. Norm. Super. Pisa 24(4): (1997), 767782.Google Scholar
Constantin, A., and McKean, H., A shallow water equation on the circle, Commun. Pure Appl. Math. 52(8): (1999), 949982.10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D3.0.CO;2-D>CrossRefGoogle Scholar
Fulton, C. T., Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 77(3–4): (1977), 293308.10.1017/S030821050002521XCrossRefGoogle Scholar
Fulton, C. T., Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 87(1–2): (1980), 134.10.1017/S0308210500012312CrossRefGoogle Scholar
Guliyev, N. J., Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, Journal of Mathematical Physics 60(6): (2019), 063501.10.1063/1.5048692CrossRefGoogle Scholar
Haupt, O., Über eine methode zum beweise von oszillations theoremen, Mathematische Annalen 76(1): (1914), 67104.CrossRefGoogle Scholar
Kikonko, M. and Mingarelli, A. B., Bounds on real and imaginary parts of non-real eigenvalues of a non-definite Sturm–Liouville problem, Journal of Differential Equations 261(11): (2016), 62216232.10.1016/j.jde.2016.08.035CrossRefGoogle Scholar
Mingarelli, A. B., A survey of the regular weighted Sturm-Liouville problem – the non-definite case. Application Differential Equations, pp. 109137 (World Scientific Publishing, Singapore, 1986).Google Scholar
Olğar, H. and Mukhtarov, O. S., Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions, Journal of Mathematical Physics 58(4): (2017), 388396.10.1063/1.4979615CrossRefGoogle Scholar
Qi, J. and Chen, S., A priori bounds and existence of non-real eigenvalues of indefinite Sturm–Liouville problems, Journal of Spectral Theory 4(1): (2014), 5363.10.4171/jst/61CrossRefGoogle Scholar
Qi, J., Xie, B. and Chen, S., The upper and lower bounds on non-real eigenvalues of indefinite Sturm-Liouville problems, Proceedings of the American Mathematical Society 144(2): (2016), 547559.10.1090/proc/12854CrossRefGoogle Scholar
Richardson, R. G. D., Theorems of oscillation for two linear differential equations of the second order with two parameters, Transactions of the American Mathematical Society 13(1): (1912), 2234.10.1090/S0002-9947-1912-1500902-8CrossRefGoogle Scholar
Richardson, R. G. D., Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order, American Journal of Mathematics 40(3): (1918), 283316.10.2307/2370485CrossRefGoogle Scholar
Sun, F. and Qi, J., A priori bounds and existence of non-real eigenvalues for singular indefinite Sturm-Liouville problems with limit-circle type endpoints, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 150(5): (2020), 26072619.10.1017/prm.2019.7CrossRefGoogle Scholar
Xie, B. and Qi, J., Non-real eigenvalues of indefinite Sturm-Liouville problems, Journal of Differential Equations 255(8): (2013), 22912301.10.1016/j.jde.2013.06.013CrossRefGoogle Scholar
Xie, B., Sun, H. and Guo, X., Non-real eigenvalues of symmetric Sturm-Liouville problems with indefinite weight functions, Electronic Journal of Qualitative Theory of Differential Equations 2017(18): (2017), 114.10.14232/ejqtde.2017.1.18CrossRefGoogle Scholar
Zhang, H., Chen, Y. and Ao, J., A generalized discontinuous Sturm-Liouville problem with boundary conditions rationally dependent on the eigenparameter, Journal of Differential Equations 352 (2023), 354372.10.1016/j.jde.2023.01.047CrossRefGoogle Scholar
Zhang, M. and Li, K., Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions, Applied Mathematics and Computation 378 (2020), 125214.CrossRefGoogle Scholar