Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-8dvf2 Total loading time: 0.293 Render date: 2022-09-26T15:45:48.038Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

On the primitive ideals of nest algebras

Published online by Cambridge University Press:  21 July 2020

John Lindsay Orr*
Affiliation:
Toll House, Traquair Road, InnerleithenEH44 6PF, UK (me@johnorr.us)

Abstract

We show that Ringrose's diagonal ideals are primitive ideals in a nest algebra (subject to the continuum hypothesis). This answers an old question of Lance and provides for the first time concrete descriptions of enough primitive ideals to obtain the Jacobson radical as their intersection. Separately, we provide a standard form for all left ideals of a nest algebra, which leads to insights into the maximal left ideals. In the case of atomic nest algebras, we show how primitive ideals can be categorized by their behaviour on the diagonal and provide concrete examples of all types.

Type
Research Article
Copyright
Copyright © The Authors, 2020. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonsall, F. F. and Duncan, J., Complete normed algebras, Ergebnisse der Mathematik, Volume 80 (Springer, 1973).CrossRefGoogle Scholar
Davidson, K. R., Nest algebras, Research Notes in Mathematics, Volume 191 (Pitman, Boston, 1988).Google Scholar
Davidson, K. R., Harrison, K. J. and Orr, J. L., Epimorphisms of nest algebras, Internat. J. Math. 6(5) (1995), 657687.CrossRefGoogle Scholar
Davidson, K. R., Katsoulis, E. and Pitts, D. R., The structure of free semigroup algebras, J. Reine Angew. Math. 533 (2001), 99125.Google Scholar
Davidson, K. R. and Orr, J. L., The Jacobson radical of a CSL algebra, Trans. Amer. Math. Soc. 334(2) (1994), 925947.CrossRefGoogle Scholar
Davidson, K. R. and Orr, J. L., Principal bimodules of nest algebras, J. Funct. Anal. 157(2) (1998), 488533.CrossRefGoogle Scholar
Davidson, K. R. and Power, S. C., Best approximation in C*-algebras, J. Reine Angew. Math. 368 (1986), 4362.Google Scholar
Donsig, A. P., Semisimple triangular AF algebras, J. Funct. Anal. 111(2) (1993), 323349.CrossRefGoogle Scholar
Donsig, A. P., Katavolos, A. and Manoussos, A., The Jacobson radical for analytic crossed products, J. Funct. Anal. 187(1) (2001), 129145.CrossRefGoogle Scholar
Fall, T., Arveson, W. and Muhly, P., Perturbations of nest algebras, J. Operator Theory 1(1) (1979), 137150.Google Scholar
Katsoulis, E. G., Moore, R. L. and Trent, T. T., Interpolation in nest algebras and applications to operator corona theorems, J. Operator Theory 29(1) (1993), 115123.Google Scholar
Katsoulis, E. G. and Ramsey, C., Crossed products of operator algebras: applications of Takai duality, J. Funct. Anal. 275(5) (2018), 11731207.CrossRefGoogle Scholar
Lance, E. C., Some properties of nest algebras, Proc. Lond. Math. Soc. 19(3) (1969), 4568.CrossRefGoogle Scholar
Larson, D. R., Nest algebras and similarity transformations, Ann. of Math. 121 (1985), 409427.CrossRefGoogle Scholar
Marcus, A. W., Spielman, D. A. and Srivastava, N., Interlacing families II: mixed characteristic polynomials and the Kadison–Singer problem, Ann. Math. 182 (2015), 327350.CrossRefGoogle Scholar
Mastrangelo, L., Muhly, P. S. and Solel, B., Locating the radical of a triangular operator algebra, Math. Proc. Cambridge Philos. Soc. 115(1) (1994), 2738.CrossRefGoogle Scholar
Orr, J. L., The maximal ideals of a nest algebra, J. Funct. Anal. 124 (1994), 119134.CrossRefGoogle Scholar
Orr, J. L., Triangular algebras and ideals of nest algebras, Mem. Amer. Math. Soc. 562(117) (1995).Google Scholar
Orr, J. L., The stable ideals of a continuous nest algebra, J. Operator Theory 45 (2001), 377412.Google Scholar
Orr, J. L., The maximal two-sided ideals of nest algebras, J. Operator Theory 73 (2015), 407416.CrossRefGoogle Scholar
Orr, J. L. and Pitts, D. R., Factorization of triangular operators and ideals through the diagonal, Proc. Edinb. Math. Soc. 40 (1997), 227241.CrossRefGoogle Scholar
Peters, J., Semicrossed products of C*-algebras, J. Funct. Anal. 59(3) (1984), 498534.CrossRefGoogle Scholar
Ringrose, J. R., On some algebras of operators, Proc. Lond. Math. Soc. 15(3) (1965), 6183.CrossRefGoogle Scholar
Weaver, N., Set theory and C*-algebras, Bull. Symb. Log. 13(1) (2007), 120.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the primitive ideals of nest algebras
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

On the primitive ideals of nest algebras
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

On the primitive ideals of nest algebras
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *