Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T07:05:09.508Z Has data issue: false hasContentIssue false

Canonical decompositions and algorithmic recognition of spatial graphs

Published online by Cambridge University Press:  14 March 2024

Stefan Friedl
Affiliation:
Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany (stefan.friedl@ur.de; lars.munser@ur.de)
Lars Munser
Affiliation:
Fakultät für Mathematik, Universität Regensburg, Regensburg, Germany (stefan.friedl@ur.de; lars.munser@ur.de)
José Pedro Quintanilha
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany (jquintan@math.uni-bielefeld.de)
Yuri Santos Rego
Affiliation:
Fakultät für Mathematik (IAG), Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany (yuri.santos@ovgu.de)

Abstract

We prove that there exists an algorithm for determining whether two piecewise-linear spatial graphs are isomorphic. In its most general form, our theorem applies to spatial graphs furnished with vertex colourings, edge colourings and/or edge orientations.

We first show that spatial graphs admit canonical decompositions into blocks, that is, spatial graphs that are non-split and have no cut vertices, in a suitable topological sense. Then, we apply a result of Haken and Matveev in order to algorithmically distinguish these blocks.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, J. W., An example of a simply connected surface bounding a region which is not simply connected, Proc. Natl. Acad. Sci. USA 10(1) (1924), 810. doi: 10.1073/pnas.10.1.8.CrossRefGoogle Scholar
Alexander, J. W., On the subdivision of 3-space by a polyhedron, Proc. Natl. Acad. Sci. USA 10(1) (1924), 68. doi: 10.1073/pnas.10.1.6.CrossRefGoogle ScholarPubMed
Barthel, S., There exist no minimally knotted planar spatial graphs on the torus, J. Knot Theory Ramif. 24(7) (2015), Id/No 1550035. doi: 10.1142/S0218216515500352.CrossRefGoogle Scholar
Friedl, S. and Herrmann, G., Spatial graphs, In: Encyclopedia of Knot Theory, Ed. by Adams, C., Flapan, E., Henrich, A., Kauffman, L. H., Ludwig, L. D., and Nelson, S., Chap. 49, pp. 461466 (New York: CRC Press, 2021). doi: 10.1201/9781138298217Google Scholar
Friedl, S. and Herrmann, G., Graphical neighborhoods of spatial graphs, In: 2019-20 MATRIX Annals, Ed. by Wood, D. R., de Gier, J., Praeger, C. E. and Tao, T., Vol. 4, MATRIX Book Series, pp. 627646 (Springer, Cham, 2021). doi: 10.1007/978-3-030-62497-2_38.CrossRefGoogle Scholar
Gordon, C. McA. and Luecke, J., Knots are determined by their complements, J. Amer. Math. Soc. 2(2) (1989), 371415. doi: 10.2307/301990979.CrossRefGoogle Scholar
Haken, W., Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I, Math. Z. 80 (1962), 89120. doi: 10.1007/BF01162369.CrossRefGoogle Scholar
Johannson, K., Homotopy equivalences of 3-manifolds with boundaries, Vol. 761, Lecture Notes in Mathematics, pp. (Springer, Berlin, 1979). doi: 10.1007/BFb0085406.CrossRefGoogle Scholar
Jungnickel, D., Graphs, Networks and Algorithms, 2nd edn., Vol. 5, Algorithms and Computation in Mathematics (Springer-Verlag, Berlin, 2005). doi: 10.1007/978-3-642-32278-5.Google Scholar
Kauffman, L. H., Invariants of graphs in three-space, Trans. Am. Math. Soc. 311(2) (1989), 697710. doi: 10.1090/S0002-9947-1989-0946218-0.CrossRefGoogle Scholar
Kauffman, L. H. and Lopes, P., Infinitely many prime knots with the same Alexander invariants, J. Knot Theory Ramifications 26(9) (2017), Id/No 1743009, p. . doi: 10.1142/S021821651743009X.CrossRefGoogle Scholar
Kauffman, L. H. and Manturov, V. O., Virtual knots and links, Tr. Mat. Inst. Steklova 252(Geom. Topol., Diskret. Geom. i Teor. Mnozh.) (2006), 114133. doi: 10.1134/s0081543806010111.Google Scholar
Lickorish, W. B. R., Simplicial moves on complexes and manifolds, In: Proceedings of the Kirbyfest (Berkeley, CA, 1998), Vol. 2, Geometry & Topology Monographs, 299320 (Geometry and Topology Publications, Coventry, 1999). doi: 10.2140/gtm.1999.2.299.Google Scholar
Matveev, S., Algorithmic Topology and Classification of 3-Manifolds, 2nd edn., Vol. 9, Algorithms and Computation in Mathematics (Springer, Berlin, 2007). doi: 10.1007/978-3-540-45899-9.Google Scholar
Rourke, C. P. and Sanderson, B. J., Introduction to Piecewise-Linear Topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69 (Springer-Verlag, New York-Heidelberg, 1972). doi: 10.1007/978-3-642-81735-9.CrossRefGoogle Scholar
Suzuki, S., On linear graphs in 3-sphere, Osaka Math. J. 7 (1970), 375396. http://projecteuclid.org/euclid.ojm/1200692930.Google Scholar
Yamada, S., An invariant of spatial graphs, J. Graph Theory 13(5) (1989), 537551. doi: 10.1002/jgt.3190130503.CrossRefGoogle Scholar