No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
We consider non-zero polynomials f(x1, …, xk) in k variables x1, …, xk with coefficients in the finite field GF[q] (q = pn for some prime p and positive integer n). We assume that the polynomials have been normalised by selecting one polynomial from each equivalence class with respect to multiplication by non-zero elements of GF[q]. By the degree of a polynomial f(x1, …, xk) will be understood the ordered set (m1, …, mk), where mi is the degree of f(x1 ,…, xk) in x1(i = 1, 2, …, K). The degree (m,…, mk) of a polynomial will be called totally positive if mi>0, i = 1, 2, …, k.