Skip to main content Accessibility help
×
×
Home

Factorization of the canonical bases for higher-level Fock spaces

  • Susumu Ariki (a1), Nicolas Jacon (a2) and Cédric Lecouvey (a3)
Abstract

The level l Fock space admits canonical bases and . They correspond to and -module structures. We establish that the transition matrices relating these two bases are unitriangular with coefficients in ℕ[v]. Restriction to the highest-weight modules generated by the empty l-partition then gives a natural quantization of a theorem by Geck and Rouquier on the factorization of decomposition matrices which are associated to Ariki–Koike algebras.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Factorization of the canonical bases for higher-level Fock spaces
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Factorization of the canonical bases for higher-level Fock spaces
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Factorization of the canonical bases for higher-level Fock spaces
      Available formats
      ×
Copyright
References
Hide All
1.Ariki, S., Representations of quantum algebras and combinatorics of Young tableaux, University Lecture Series, Volume 26 (American Mathematical Society, Providence, RI, 2002).
2.Ariki, S. and Koike, K., A Hecke algebra of (ℤ/rℤ)n and construction of its irreducible representations, Adv. Math. 106(2) (1994), 216243.
3.Bonnafé, C. and Jacon, N., Cellular structures for Hecke algebras of type Bn, J. Alg. 321(11) (2009), 30893111.
4.Brundan, J. and Kleshchev, A. S., Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math. 222 (2009), 18831942.
5.Brundan, J., Kleshchev, A. S. and Wang, W., Graded Specht modules, J. Reine Angew., in press (available at http://dx.doi.org/10.1515/CRELLE.2011.033).
6.Deodhar, V. V., On some geometric aspects of Bruhat orderings, II, J. Alg. 111 (1987), 483506.
7.Dipper, R. and Mathas, A., Morita equivalences of Ariki-Koike algebras, Math. Z. 240(3) (2002), 579610.
8.Fayers, M., An LLT-type algorithm for computing higher-level canonical bases, J. Pure Appl. Alg. 214 (12) (2010), 21862198.
9.Foda, O., Leclerc, B., Okado, M., Thibon, J.-Y. and Welsh, T., Branching functions of An−1(1) and Jantzen-Seitz problem for Ariki-Koike algebras, Adv. Math. 141 (1999), 322365.
10.Geck, M., Representations of Hecke algebras at roots of unity, Astérisque 252(836) (1998), 3355.
11.Geck, M., Modular representations of Hecke algebras, in Group representation theory (ed. Geck, M., Testerman, D. M. and Thévenaz, J.), pp. 301353 (EPFL Press, Lausanne, 2007).
12.Geck, M. and Rouquier, R., Centers and simple modules for Iwahori-Hecke algebras, in Finite reductive groups, Progress in Mathematics, Volume 141, pp. 251272 (Birkhäuser, 1997).
13.Graham, J. J. and Lehrer, G. I., Cellular algebras, Invent. Math. 123 (1996), 134.
14.Grojnowski, I. and Haiman, M., Affine Hecke algebras and positivity of LLT and Macdonald polynomials, preprint (2007).
15.Halverson, T. and Ram, A., Murnaghan-Nakayama rules for characters of Iwahori-Hecke algebras of the complex reflection groups G(r, p, n), Can. J. Math. 50(1) (1998), 167192.
16.Jacon, N., An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras, J. Alg. 292 (2005), 100109.
17.Jacon, N., Crystal graphs of higher level q-deformed Fock spaces, Lusztig a-values and Ariki-Koike algebras, Alg. Representat. Theory 10(6) (2007), 565591.
18.Jacon, N., Constructible representations and basic sets in type Bn, preprint (2009).
19.Jacon, N. and Lecouvey, C., Crystal isomorphisms for irreducible highest weight -modules of higher level, Alg. Representat. Theory 13 (2009), 467489.
20.Jimbo, M., Misra, K. C., Miwa, T. and Okado, M., Combinatorics of representations of at q = 0, Commun. Math. Phys. 136 (1991), 543566.
21.Kashiwara, M., Bases cristallines des groupes quantiques, Cours Spécialisés, Tome 9 (Société Mathématique de France, Paris, 2002).
22.Kashiwara, M. and Tanisaki, A., Parabolic Kazhdan-Lusztig polynomials and Schubert varieties, J. Alg. 249 (2002), 306325.
23.Lascoux, A., Leclerc, B. and Thibon, J.-Y., Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Commun. Math. Phys. 181(1) (1996), 205263.
24.Leclerc, B. and Miyachi, H., Constructible characters and canonical bases. J. Alg. 277(1) (2004), 298317.
25.Lecouvey, C., Parabolic Kazhdan-Lusztig polynomials, plethysm and generalized Hall-Littlewood functions for classical types, Eur. J. Combin. 30(1) (2009), 157191.
26.Mathas, A., The representation theory of the Ariki-Koike and cyclotomic q-Schur algebras, in Representation theory of algebraic groups and quantum groups, Advanced Studies in Pure Mathematics, Volume 40 (2004), 261320.
27.Ram, A. and Nelsen, K., Kostka-Foulkes polynomials and Macdonald spherical functions, in Surveys in Combinatorics 2003 (ed. Wensley, C.), London Mathematical Society Lecture Note Series, Volume 307, pp. 325370 (Cambridge University Press, 2003).
28.Rouquier, R., q-Schur algebras and complex reflection groups. Moscow Math. J. 184(1) (2008), 119158.
29.Shephard, G. C. and Todd, J. A, Finite unitary reflection groups, Can. J. Math. 6 (1954), 274304.
30.Uglov, D., Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials, in Physical combinatorics, Progress in Mathematics, Volume 191, pp. 249299 (Birkhäuser, 2000).
31.Yvonne, X., A conjecture for q-decomposition matrices of cyclotomic v-Schur algebras, J. Alg. 304 (2006), 419456.
32.Yvonne, X., An algorithm for computing the canonical bases of higher-level q-deformed Fock spaces, J. Alg. 309 (2007), 760785.
33.Yvonne, X., Base canonique d'espace de Fock de niveau supérieur, Doctoral Thesis, Université de Basse-Normandie, France (available at http://tel.archives-ouvertes.fr/tel-00137705/fr).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Edinburgh Mathematical Society
  • ISSN: 0013-0915
  • EISSN: 1464-3839
  • URL: /core/journals/proceedings-of-the-edinburgh-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed