Skip to main content Accessibility help

Improved A1A and Related Estimates for Commutators of Rough Singular Integrals

  • Israel P. Rivera-Ríos (a1) (a2)


An A1A estimate, improving on a previous result for [b, TΩ] with $\Omega \in L^{infty}({\open S}^{n - 1})$ and b∈BMO is obtained. A new result in terms of the A constant and the one supremum AqAexp constant is also proved, providing a counterpart for commutators of the result obtained by Li. Both of the preceding results rely upon a sparse domination result in terms of bilinear forms, which is established using techniques from Lerner.



Hide All
1Caldarelli, M., Lerner, A. K. and Ombrosi, S., On a counterexample related to weighted weak type estimates for singular integrals, Proc. Amer. Math. Soc. 145(7) (2017), 30053012.
2Coifman, R. R., Rochberg, R. and Weiss, G., Factorization theorems for Hardy spaces in several variables, Ann. Math. 103(3) (1976), 611635.
3Conde-Alonso, J. M., Culiuc, A., Di Plinio, F. and Ou, Y., A sparse domination principle for rough singular integrals, Anal. PDE 10(5) (2017), 12551284.
4Cruz-Uribe, D., Martell, J. M. and Pérez, C., Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, Volume 215 (Birkhäuser/Springer Basel AG, Basel, 2011).
5Duoandikoetxea, J., Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 ( 2015), 18861901.
6García-Cuerva, J. and de Francia, J. L. Rubio, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, Volume 116. Notas de Matemática (Mathematical Notes) Volume 104 (North-Holland Publishing, Amsterdam, 1985).
7Grafakos, L., Modern Fourier analysis, 3rd edn. Graduate Texts in Mathematics, Volume 250 (Springer, New York, 2014).
8Hytönen, T. P. and Pérez, C., Sharp weighted bounds involving A , Anal. PDE 6(4) (2013), 777818.
9Hytönen, T. P., Pérez, C. and Rela, E., Sharp reverse Hölder property for A weights on spaces of homogeneous type, J. Funct. Anal. 263(12) (2012), 38833899.
10Hytönen, T. P., Roncal, L. and Tapiola, O., Quantitative weighted estimates for rough homogeneous singular integrals, Israel J. Math. 218(1) (2017), 133164.
11Ibañez-Firnkorn, G. H. and Rivera-Ríos, I. P., Sparse and weighted estimates for generalized Hörmander operators and commutators, preprint. Available at
12Lerner, A. K., On pointwise estimates involving sparse operators, N. Y. J. Math. 22 ( 2016), 341349.
13Lerner, A. K., A weak type estimate for rough singular integrals, preprint. Available at, to appear in Revista Mat. Iberoamericana.
14Lerner, A. K. and Moen, K., Mixed A pA estimates with one supremum, Studia Math. 219(3) (2013), 247267.
15Lerner, A. K. and Nazarov, F., Intuitive dyadic calculus: the basics, preprint. Available at, to appear in Expo. Math.
16Lerner, A. K., Ombrosi, S. and Pérez, C., Sharp A 1 bounds for Calderón–Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden, Int. Math. Res. Not. IMRN 2008, rnm161.
17Lerner, A. K., Ombrosi, S. and Pérez, C., A 1 bounds for Calderón–Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. 16(1) (2009), 149156.
18Lerner, A. K., Ombrosi, S. and Rivera-Ríos, I. P., On pointwise and weighted estimates for commutators of Calderón–Zygmund operators, Adv. Math. 319 ( 2017), 153181.
19Li, K., Sharp weighted estimates involving one supremum, C. R. Math. Acad. Sci. Paris 355(8) (2017), 906909.
20Li, K., Pérez, C., Rivera-Ríos, I. P. and Roncal, L., Weighted norm inequalities for rough singular integral operators, preprint. Available at
21Pérez, C., On sufficient conditions for the boundedness of the Hardy–Littlewood maximal operator between weighted L p-spaces with different weights, Proc. London Math. Soc. (3) 71(1) (1995), 135157.
22Pérez, C., Rivera-Ríos, I. P. and Roncal, L., A 1 theory of weights for rough homogeneous singular integrals and commutators, preprint. Available at, to appear in Ann. Sci. Scuola Norm. Sup. (Scienze).
23Pick, L., Kufner, A., John, O. and Fuc̆ik, S., Function spaces, Second revised and extended edition, Volume 1, De Gruyter Series in Nonlinear Analysis and Applications, Volume 14 (Walter de Gruyter and Co., Berlin, 2013).
24Ortiz-Caraballo, C., Quadratic A 1 bounds for commutators of singular integrals with BMO functions, Indiana Univ. Math. J. 60(6) (2011), 21072130.
25Rao, M. M. and Ren, Z. D., Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, Volume 146 (Marcel Dekker, New York, 1991).
26Seeger, A., Singular integral operators with rough convolution kernels, J. Amer. Math. Soc. 9(1) (1996), 95105.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Related content

Powered by UNSILO

Improved A1A and Related Estimates for Commutators of Rough Singular Integrals

  • Israel P. Rivera-Ríos (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.