1.Bloom, T., A quantitative improvement for Roth's theorem on arithmetic progressions, J. London Math. Soc. (2) 93(3) (2016), 643–663.
2.Conlon, D., Fox, J. and Zhao, Y., The Green–Tao theorem: an exposition, EMS Surv. Math. Sci. 1(2) (2014), 249–282.
3.Conlon, D., Fox, J. and Zhao, Y., A relative Szemerédi theorem, Geom. Funct. Anal. 25(3) (2015), 733–762.
4.Goldston, D. A., Pintz, J. and Yıldırım, C. Y., Primes in tuples. I, Ann. of Math. (2) 170(2) (2009), 819–862.
5.Gowers, W. T., A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11(3) (2001), 465–588.
6.Gowers, W. T., Decompositions, approximate structure, transference, and the Hahn–Banach theorem, Bull. London Math. Soc. 42(4) (2010), 573–606.
7.Green, B., Roth's theorem in the primes, Ann. of Math. (2) 161(3) (2005), 1609–1636.
8.Green, B. and Tao, T., The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167(2) (2008), 481–547.
9.Green, B. and Tao, T., New bounds for Szemerédi's theorem, III: A polylogarithmic bound for r _{4} (n), preprint (arXiv:1705.01703, 2017).
10.Helfgott, H. A. and de Roton, A., Improving Roth's theorem in the primes, Int. Math. Res. Not. IMRN 2011(4) (2011), 767–783.
11.Henriot, K., On systems of complexity one in the primes, Proc. Edinb. Math. Soc. (2) 60(1) (2016), 133–163.
12.Naslund, E., On improving Roth's theorem in the primes, Mathematika 61(1) (2015), 49–62.
13.O'Bryant, K., Sets of integers that do not contain long arithmetic progressions, Electron. J. Combin. 18(1) Paper 59, 15, (2011).
14.Reingold, O., Trevisan, L., Tulsiani, M. and Vadhan, S., New proofs of the Green–Tao–Ziegler dense model theorem: an exposition, preprint (arXiv:0806.0381, 2008).
15.Tao, T. and Ziegler, T., The primes contain arbitrarily long polynomial progressions, Acta Math. 201(2) (2008), 213–305.
16.Varnavides, P., On certain sets of positive density, J. Lond. Math. Soc. 34 (1959), 358–360.
17.Zhao, Y., An arithmetic transference proof of a relative Szemerédi theorem, Math. Proc. Cambridge Philos. Soc. 156(2) (2014), 255–261.