Hostname: page-component-cb9f654ff-5kfdg Total loading time: 0 Render date: 2025-09-04T19:09:56.028Z Has data issue: false hasContentIssue false

Twisted Rokhlin property for mapping class groups

Published online by Cambridge University Press:  02 September 2025

Pravin Kumar
Affiliation:
Department of Mathematical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, P. O. Manauli, Punjab 140306, India
Apeksha Sanghi*
Affiliation:
Department of Mathematical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, P. O. Manauli, Punjab 140306, India
Mahender Singh
Affiliation:
Department of Mathematical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S. A. S. Nagar, P. O. Manauli, Punjab 140306, India
*
Corresponding author: Apeksha Sanghi, email: apekshasanghi93@gmail.com

Abstract

Given an automorphism ϕ of a group G, the map $(g,h) \mapsto gh\phi(g)^{-1}$, defines a left action of G on itself, whose orbits are called the ϕ-twisted conjugacy classes. In this paper, we consider two interesting aspects of this action for mapping class groups, namely, the existence of a dense orbit and the count of orbits. Generalising the idea of the Rokhlin property, a topological group is said to exhibit the twisted Rokhlin property if, for each automorphism ϕ of the group, there exists a ϕ-twisted conjugacy class that is dense in the group. We provide a complete classification of connected orientable infinite-type surfaces without boundaries whose mapping class groups possess the twisted Rokhlin property. Additionally, we prove that the mapping class groups of the remaining surfaces do not admit any dense ϕ-twisted conjugacy class for any automorphism ϕ. This supplements the recent work of Lanier and Vlamis on the Rokhlin property of big mapping class groups. Regarding the count of twisted conjugacy classes, we prove that the number of ϕ-twisted conjugacy classes is infinite for each automorphism ϕ of the mapping class group of a connected orientable infinite-type surface without boundary.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aougab, T., Patel, P. and Vlamis, N. G., Isometry groups of infinite-genus hyperbolic surfaces, Math. Ann. 381(1-2) (2021), 459498.10.1007/s00208-021-02164-zCrossRefGoogle Scholar
Aramayona, J. and Vlamis, N., Big mapping class groups: an overview. In The Tradition of Thurston–Geometry and Topology, pp. 459496 (Springer, Cham, 2020).10.1007/978-3-030-55928-1_12CrossRefGoogle Scholar
Bavard, J., Dowdall, S. and Rafi, K., Isomorphisms between big mapping class groups, Int. Math. Res. Not. IMRN(10) (2020), 30843099.10.1093/imrn/rny093CrossRefGoogle Scholar
Bhunia, S. and Krishna, S., Twisted conjugacy in big mapping class groups, Topology Appl. 324 (2023), 13.10.1016/j.topol.2022.108353CrossRefGoogle Scholar
Farb, B. and Margalit, D., A primer on mapping class groups. Princeton Mathematical Series, Volume 49, p. xiv+472 (Princeton University Press, Princeton, NJ, 2012).Google Scholar
Fel’shtyn, A., Dynamical zeta functions, Nielsen theory and Reidemeister torsion, Mem. Amer. Math. Soc. 147(699) (2000), xii+146.Google Scholar
Fel’shtyn, A., New directions in Nielsen–Reidemeister theory, Topology Appl. 157(10-11) (2010), 17241735.10.1016/j.topol.2010.02.018CrossRefGoogle Scholar
Fel’shtyn, A. and Gonçalves, D. L., Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with Francois Dahmani, Geom. Dedicata 146 (2010), 211223 ).10.1007/s10711-009-9434-6CrossRefGoogle Scholar
Fel’shtyn, A., Leonov, Y. and Troitsky, E., Twisted conjugacy classes in saturated weakly branch groups, Geom. Dedicata 134 (2008), 6173.10.1007/s10711-008-9245-1CrossRefGoogle Scholar
Gantmacher, F., Canonical representation of automorphisms of a complex semi-simple Lie group, Rec. Math. (Moscou) 5(47) (1939), 101146.Google Scholar
Glasner, E. and Weiss, B., The topological Rohlin property and topological entropy, Amer. J. Math. 123(6) (2001), 10551070.10.1353/ajm.2001.0039CrossRefGoogle Scholar
Grothendieck, A.. Formules de Nielsen-Wecken et de Lefschetz en géométrie algébrique, in: Séminaire de Géométrie Algébrique du Bois-Marie 1965–66 SGA 5 (Lecture Notes in Mathematics), Springer, Berlin, 1977, pp. 407441 Volume 569.10.1007/BFb0096811CrossRefGoogle Scholar
Hernández, J., Hrušák, M., Morales, I, Randecker, A., Sedano, M. and Valdez, F., Conjugacy classes of big mapping class groups, J. Lond. Math. Soc. 106(2) (2022), 11311169.10.1112/jlms.12594CrossRefGoogle Scholar
Kechris, A. S. and Rosendal, C., Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc. (3) 94(2) (2007), 30235010.1112/plms/pdl007CrossRefGoogle Scholar
Korkmaz, M., Generating the surface mapping class group by two elements, Trans. Amer. Math. Soc. 357(8) (2005), 32993310.10.1090/S0002-9947-04-03605-0CrossRefGoogle Scholar
Lanier, J. and Loving, M., Centers of subgroups of big mapping class groups and the Tits alternative, Glas. Mat. Ser. III 55(75)(1) (2020), 8591.10.3336/gm.55.1.07CrossRefGoogle Scholar
Lanier, J. and Vlamis, N. G., Mapping class groups with the Rokhlin property, Math. Z. 302(3) (2022), 13431366.10.1007/s00209-022-03096-3CrossRefGoogle Scholar
Mann, K. and Rafi, K., Large scale geometry of big mapping class groups, Geom. Topol. 27 (2023), 22372296.10.2140/gt.2023.27.2237CrossRefGoogle Scholar
Masur, H. A. and Minsky, Y. N., Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138(1) (1999), 103149.10.1007/s002220050343CrossRefGoogle Scholar
Masur, H. A. and Minsky, Y. N., Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10(4) (2000), 902974.10.1007/PL00001643CrossRefGoogle Scholar
Reidemeister, K., Automorphismen von Homotopiekettenringen, Math. Ann. 112 (1936), 586593.10.1007/BF01565432CrossRefGoogle Scholar
Richards, I, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259269.10.1090/S0002-9947-1963-0143186-0CrossRefGoogle Scholar
Shokranian, S., The Selberg-Arthur Trace formula, Based on Lectures by James Arthur (Lecture Notes in Mathematics), p. viii+97 (Springer-Verlag, Berlin, 1992).10.1007/BFb0092305CrossRefGoogle Scholar
Vlamis, N. G., Notes on the topology of mapping class groups. http://qcpages.qc.cuny.edu/nvlamis/Papers/AIM-Notes.pdf.Google Scholar
Wesolek, P., Conjugacy class conditions in locally compact second countable groups, Proc. Amer. Math. Soc. 144(1) (2016), 399409.10.1090/proc/12645CrossRefGoogle Scholar