Skip to main content
×
×
Home

Can milk proteins be a useful tool in the management of cardiometabolic health? An updated review of human intervention trials

  • Ágnes A. Fekete (a1) (a2), D. Ian Givens (a2) and Julie A. Lovegrove (a1)
Abstract

The prevalence of cardiometabolic diseases is a significant public health burden worldwide. Emerging evidence supports the inverse association between greater dairy consumption and reduced risk of cardiometabolic diseases. Dairy proteins may have an important role in the favourable impact of dairy on human health such as blood pressure (BP), blood lipid and glucose control. The purpose of this review is to update and critically evaluate the evidence on the impacts of casein and whey protein in relation to metabolic function. Evidence from short-term clinical studies assessing postprandial responses to milk protein ingestion suggests benefits on vascular function independent of BP, as well as improvement in glycaemic homeostasis. Long-term interventions have been less conclusive, with some showing benefits and others indicating a lack of improvement in vascular function. During chronic consumption BP appears to be lowered and both dyslipidaemia and hyperglacaemia seem to be controlled. Limited number of trials investigated the effects of dairy proteins on oxidative stress and inflammation. Although the underlying mechanisms of milk proteins on cardiometabolic homeostasis remains to be elucidated, the most likely mechanism is to improve insulin resistance. The incorporation of meals enriched with dairy protein in the habitual diet may result in the beneficial effects on cardiometabolic health. Nevertheless, future well-designed, controlled studies are needed to investigate the relative effects of both casein and whey protein on BP, vascular function, glucose homeostasis and inflammation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Can milk proteins be a useful tool in the management of cardiometabolic health? An updated review of human intervention trials
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Can milk proteins be a useful tool in the management of cardiometabolic health? An updated review of human intervention trials
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Can milk proteins be a useful tool in the management of cardiometabolic health? An updated review of human intervention trials
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Á. A. Fekete, email a.a.fekete@reading.ac.uk
References
Hide All
1. Muehlhoff, EBA, McMahon, D (2013) Milk and dairy products in human nutrition: Food and Agricultural Organization of the United Nations. http://www.fao.org/docrep/018/i3396e/i3396e.pdf (accessed August 2015).
2. OECD-FAO Agricultural Outlook 2014–2023 (2014) OECD Publishing. https://www.embrapa.br/documents/1024963/1025740/OECD-FAO_Agricultural_Outlook_2014-2023/20082926-0f88-4159-970a-2a1c65795c47 (accessed August 2015).
3. Markey, O, Vasilopoulou, D, Givens, DI et al. (2014) Dairy and cardiovascular health: friend or foe? Nutr Bull 39, 161171.
4. Elwood, PC, Pickering, JE, Givens, DI et al. (2010) The consumption of milk and dairy foods and the incidence of vascular disease and diabetes: an overview of the evidence. Lipids 45, 925939.
5. Ralston, RA, Lee, JH, Truby, H et al. (2012) A systematic review and meta-analysis of elevated blood pressure and consumption of dairy foods. J Hum Hypertens 26, 313.
6. Aune, D, Norat, T, Romundstad, P et al. (2013) Dairy products and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Am J Clin Nutr 98, 10661083.
7. Boirie, Y, Dangin, M, Gachon, P et al. (1997) Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci USA 94, 1493014935.
8. Phillips, SM (2011) A comparison of whey to caseinate. Am J Physiol Endocrinol Metab 300, E610; author reply E1–2.
9. Reitelseder, S, Agergaard, J, Doessing, S et al. (2011) Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. Am J Physiol Endocrinol Metab 300, E231E242.
10. Townsend, NWJ, Bhatnagar, P, Wickramasinghe, K et al. (2014) Cardiovascular Disease Statistics. London: British Heart Foundation.
11. Iestra, JA, Kromhout, D, van der Schouw, YT et al. (2005) Effect size estimates of lifestyle and dietary changes on all-cause mortality in coronary artery disease patients: a systematic review. Circulation 112, 924934.
12. Mancia, G, De Backer, G, Dominiczak, A et al. (2007) Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 28, 14621536.
13. Fekete, AA, Givens, DI & Lovegrove, JA (2013) The impact of milk proteins and peptides on blood pressure and vascular function: a review of evidence from human intervention studies. Nutr Res Rev 26, 177190.
14. Fekete, AA, Givens, DI & Lovegrove, JA (2015) Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials. Nutrients 7, 659681.
15. Xu, JY, Qin, LQ, Wang, PY et al. (2008) Effect of milk tripeptides on blood pressure: a meta-analysis of randomized controlled trials. Nutrition 24, 933940.
16. Cicero, AF, Gerocarni, B, Laghi, L et al. (2011) Blood pressure lowering effect of lactotripeptides assumed as functional foods: a meta-analysis of current available clinical trials. J Hum Hypertens 25, 425436.
17. Turpeinen, AM, Jarvenpaa, S, Kautiainen, H et al. (2013) Antihypertensive effects of bioactive tripeptides-a random effects meta-analysis. Ann Med 45, 5156.
18. Qin, LQ, Xu, JY, Dong, JY et al. (2013) Lactotripeptides intake and blood pressure management: a meta-analysis of randomised controlled clinical trials. Nutr Metab Cardiovasc Dis 23, 395402.
19. Chanson-Rolle, A, Aubin, F, Braesco, V et al. (2015) Influence of the lactotripeptides isoleucine-proline-proline and valine–proline–proline on systolic blood pressure in japanese subjects: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 10, e0142235.
20. Bulletin of the International Dairy Federation (2010) The World Dairy Situation 2010. http://www.milksa.co.za/sites/default/files/KORINL070_world_dairy_situation_2010.pdf.
21. Johnson, JA (2008) Ethnic differences in cardiovascular drug response: potential contribution of pharmacogenetics. Circulation 118, 13831393.
22. Siltari, A, Viitanen, R, Kukkurainen, S et al. (2014) Does the cis/trans configuration of peptide bonds in bioactive tripeptides play a role in ACE-1 enzyme inhibition? Biologics 8, 5965.
23. Ashar, MCR (2004) Fermented milk containing ACE-inhibitory peptides reduces blood pressure in middle aged hypertensive subjects. Milchwissenschaft 59, 363366.
24. Sekiya, SKY, Kita, E, Imamura, Y et al. (1992) Antihypertensive effects of tryptic hydrolysate of casein on normotensive and hypertensive volunteers. J Nutr Food Sci 45, 513517.
25. Townsend, RR, McFadden, CB, Ford, V et al. (2004) A randomized, double-blind, placebo-controlled trial of casein protein hydrolysate (C12 peptide) in human essential hypertension. Am J Hypertens 17(11 Pt 1), 10561058.
26. Cadee, JA, Chang, CY, Chen, CW et al. (2007) Bovine casein hydrolysate (c12 Peptide) reduces blood pressure in prehypertensive subjects. Am J Hypertens 20, 15.
27. Sugai, R (1998) ACE inhibitors and functional foods. Bull IDF 336, 1720.
28. Kawase, M, Hashimoto, H, Hosoda, M et al. (2000) Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. J Dairy Sci 83, 255263.
29. Lee, YM, Skurk, T, Hennig, M et al. (2007) Effect of a milk drink supplemented with whey peptides on blood pressure in patients with mild hypertension. Eur J Nutr 46, 2127.
30. Fluegel, SM, Shultz, TD, Powers, JR et al. (2010) Whey beverages decrease blood pressure in prehypertensive and hypertensive young men and women. Int Dairy J 20, 753760.
31. Hodgson, JM, Zhu, K, Lewis, JR et al. (2012) Long-term effects of a protein-enriched diet on blood pressure in older women. Br J Nutr 107, 16641672.
32. Pal, S & Ellis, V (2011) Acute effects of whey protein isolate on blood pressure, vascular function and inflammatory markers in overweight postmenopausal women. Br J Nutr 105, 15121519.
33. Pal, S & Ellis, V (2010) The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity (Silver Spring) 18, 13541359.
34. Petyaev, IM, Dovgalevsky, PY, Klochkov, VA et al. (2012) Whey protein lycosome formulation improves vascular functions and plasma lipids with reduction of markers of inflammation and oxidative stress in prehypertension. Sci World J 2012, 269476.
35. Arnberg, K, Larnkjaer, A, Michaelsen, KF et al. (2013) Casein improves brachial and central aortic diastolic blood pressure in overweight adolescents: a randomised, controlled trial. J Nutr Sci 2, e43.
36. Figueroa, A, Wong, A, Kinsey, A et al. (2014) Effects of milk proteins and combined exercise training on aortic hemodynamics and arterial stiffness in young obese women with high blood pressure. Am J Hypertens 27, 338344.
37. Alipour, A, Elte, JW, van Zaanen, HC et al. (2007) Postprandial inflammation and endothelial dysfuction. Biochem Soc Trans 35(Pt 3), 466469.
38. Klop, B, Proctor, SD, Mamo, JC et al. (2012) Understanding postprandial inflammation and its relationship to lifestyle behaviour and metabolic diseases. Int J Vasc Med 2012, 947417.
39. Lopez-Miranda, J, Williams, C & Lairon, D (2007) Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. Br J Nutr 98, 458473.
40. Teunissen-Beekman, KF, Dopheide, J, Geleijnse, JM et al. (2014) Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses. Br J Nutr 112, 600608.
41. Schachinger, V, Britten, MB & Zeiher, AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101, 18991906.
42. Verma, S & Anderson, TJ (2002) Fundamentals of endothelial function for the clinical cardiologist. Circulation 105, 546549.
43. Thijssen, DH, Black, MA, Pyke, KE et al. (2011) Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol 300, H212.
44. Bruno, RM, Bianchini, E, Faita, F et al. (2014) Intima media thickness, pulse wave velocity, and flow mediated dilation. Cardiovasc Ultrasound 12, 34.
45. Vlachopoulos, C, Aznaouridis, K & Stefanadis, C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55, 13181327.
46. Hirota, T, Ohki, K, Kawagishi, R et al. (2007) Casein hydrolysate containing the antihypertensive tripeptides Val–Pro–Pro and Ile–Pro–Pro improves vascular endothelial function independent of blood pressure-lowering effects: contribution of the inhibitory action of angiotensin-converting enzyme. Hypertens Res 30, 489496.
47. Jauhiainen, T, Ronnback, M, Vapaatalo, H et al. (2010) Long-term intervention with Lactobacillus helveticus fermented milk reduces augmentation index in hypertensive subjects. Eur J Clin Nutr 64, 424431.
48. Turpeinen, AM, Kumpu, M, Rönnback, M et al. (2009) Antihypertensive and cholesterol-lowering effects of a spread containing bioactive peptides IPP and VPP and plant sterols. J Funct Foods 1, 260265.
49. Yoshizawa, M, Maeda, S, Miyaki, A et al. (2009) Additive beneficial effects of lactotripeptides and aerobic exercise on arterial compliance in postmenopausal women. Am J Physiol Heart Circ Physiol 297, H1899H1903.
50. Yoshizawa, M, Maeda, S, Miyaki, A et al. (2010) Additive beneficial effects of lactotripeptides intake with regular exercise on endothelium-dependent dilatation in postmenopausal women. Am J Hypertens 23, 368372.
51. Jauhiainen, T, Rönnback, M, Vapaatalo, H et al. (2007) Lactobacillus helveticus fermented milk reduces arterial stiffness in hypertensive subjects. Int Dairy J 17, 12091211.
52. Cicero, AF, Rosticci, M, Gerocarni, B et al. (2011) Lactotripeptides effect on office and 24-h ambulatory blood pressure, blood pressure stress response, pulse wave velocity and cardiac output in patients with high-normal blood pressure or first-degree hypertension: a randomized double-blind clinical trial. Hypertens Res 34, 10351040.
53. Nakamura, T, Mizutani, J, Ohki, K et al. (2011) Casein hydrolysate containing Val–Pro–Pro and Ile–Pro–Pro improves central blood pressure and arterial stiffness in hypertensive subjects: a randomized, double-blind, placebo-controlled trial. Atherosclerosis 219, 298303.
54. Turpeinen, AM, Ehlers, PI, Kivimaki, AS et al. (2011) Ile–Pro–Pro and Val–Pro–Pro tripeptide-containing milk product has acute blood pressure lowering effects in mildly hypertensive subjects. Clin Exp Hypertens 33, 388396.
55. Ballard, KD, Kupchak, BR, Volk, BM et al. (2013) Acute effects of ingestion of a novel whey-derived extract on vascular endothelial function in overweight, middle-aged men and women. Br J Nutr 109, 882893.
56. Ballard, KD, Bruno, RS, Seip, RL et al. (2009) Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial. Nutr J 8, 34.
57. Mariotti, F, Valette, M, Lopez, C et al. (2015) Casein compared with whey proteins affects the organization of dietary fat during digestion and attenuates the postprandial triglyceride response to a mixed high-fat meal in healthy, overweight men. J Nutr 145, 26572664.
58. Franklin, SS (2005) Arterial stiffness and hypertension: a two-way street? Hypertension 45, 349351.
59. Dernellis, J & Panaretou, M (2005) Aortic stiffness is an independent predictor of progression to hypertension in nonhypertensive subjects. Hypertension 45, 426431.
60. Sesso, HD, Buring, JE, Rifai, N et al. (2003) C-reactive protein and the risk of developing hypertension. Jama 290, 29452951.
61. Tsai, SS, Lin, YS, Lin, CP et al. (2015) Metabolic syndrome-associated risk factors and high-sensitivity c-reactive protein independently predict arterial stiffness in 9903 subjects with and without chronic kidney disease. Medicine (Baltimore) 94, e1419.
62. Henry, RM, Kostense, PJ, Spijkerman, AM et al. (2003) Arterial stiffness increases with deteriorating glucose tolerance status: the Hoorn Study. Circulation 107, 20892095.
63. Singhal, A, Farooqi, IS, Cole, TJ et al. (2002) Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation 106, 19191924.
64. Baron, AD (1994) Hemodynamic actions of insulin. Am J Physiol 267(2 Pt 1), E187E202.
65. Rosen, OM (1987) After insulin binds. Science 237, 14521458.
66. Moore, RD (1983) Effects of insulin upon ion transport. Biochim Biophys Acta 737, 149.
67. Anderson, EA, Hoffman, RP, Balon, TW et al. (1991) Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 87, 22462252.
68. Giugliano, D, Marfella, R, Verrazzo, G et al. (1997) The vascular effects of L-arginine in humans. The role of endogenous insulin. J Clin Invest 99, 433438.
69. Gates, PE, Boucher, ML, Silver, AE et al. (2007) Impaired flow-mediated dilation with age is not explained by L-arginine bioavailability or endothelial asymmetric dimethylarginine protein expression. J Appl Physiol 102, 6371.
70. Floyd, JC Jr, Fajans, SS, Conn, JW et al. (1966) Insulin secretion in response to protein ingestion. J Clin Invest 45, 14791486.
71. Schmid, R, Schusdziarra, V, Schulte-Frohlinde, E et al. (1989) Role of amino acids in stimulation of postprandial insulin, glucagon, and pancreatic polypeptide in humans. Pancreas 4, 305314.
72. Schmid, R, Schulte-Frohlinde, E, Schusdziarra, V et al. (1992) Contribution of postprandial amino acid levels to stimulation of insulin, glucagon, and pancreatic polypeptide in humans. Pancreas 7, 698704.
73. Nilsson, M, Stenberg, M, Frid, AH et al. (2004) Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am J Clin Nutr 80, 12461253.
74. Calbet, JA & MacLean, DA (2002) Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr 132, 21742182.
75. Calbet, JA & Holst, JJ (2004) Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur J Nutr 43, 127139.
76. van Loon, LJ, Saris, WH, Verhagen, H et al. (2000) Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr 72, 96105.
77. Yang, J, Chi, Y, Burkhardt, BR et al. (2010) Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr Rev 68, 270279.
78. Melnik, BC (2012) Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes 3, 3853.
79. Yabe, D & Seino, Y (2011) Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and beta cell preservation. Prog Biophys Mol Biol 107, 248256.
80. Jakubowicz, D & Froy, O (2013) Biochemical and metabolic mechanisms by which dietary whey protein may combat obesity and type 2 diabetes. J Nutr Biochem 24, 15.
81. Poudyal, H (2015) Mechanisms for the cardiovascular effects of glucagon-like peptide-1. Acta Physiol (Oxf) 216, 277313.
82. Hall, WL, Millward, DJ, Long, SJ et al. (2003) Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nutr 89, 239248.
83. Veldhorst, MA, Nieuwenhuizen, AG, Hochstenbach-Waelen, A et al. (2009) Dose-dependent satiating effect of whey relative to casein or soy. Physiol Behav 96, 675682.
84. Fan, H, Yan, S, Stehling, S et al. (2003) Dipeptidyl peptidase IV/CD26 in T cell activation, cytokine secretion and immunoglobulin production. Adv Exp Med Biol 524, 165174.
85. Lacroix, IME & Li-Chan, ECY (2012) Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. J Funct Foods 4, 403422.
86. Patil, P, Mandal, S, Tomar, SK et al. (2015) Food protein-derived bioactive peptides in management of type 2 diabetes. Eur J Nutr 54, 863880.
87. Slama, G, Elgrably, F, Sola, A et al. (2006) Postprandial glycaemia: a plea for the frequent use of delta postprandial glycaemia in the treatment of diabetic patients. Diab Metab 32, 187192.
88. Lacroix, IM & Li-Chan, EC (2013) Inhibition of dipeptidyl peptidase (DPP)-IV and alpha-glucosidase activities by pepsin-treated whey proteins. J Agric Food Chem 61, 75007506.
89. Konrad, B, Anna, D, Marek, S et al. (2014) The evaluation of dipeptidyl peptidase (DPP)-IV, alpha-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian Pumpkin. Int J Pept Res Ther 20, 483491.
90. Petersen, BL, Ward, LS, Bastian, ED et al. (2009) A whey protein supplement decreases post-prandial glycemia. Nutr J 8, 47.
91. Pal, S & Ellis, V (2010) The acute effects of four protein meals on insulin, glucose, appetite and energy intake in lean men. Br J Nutr 104, 12411248.
92. Akhavan, T, Luhovyy, BL, Panahi, S et al. (2014) Mechanism of action of pre-meal consumption of whey protein on glycemic control in young adults. J Nutr Biochem 25, 3643.
93. Akhavan, T, Luhovyy, BL, Brown, PH et al. (2010) Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am J Clin Nutr 91, 966975.
94. Acheson, KJ, Blondel-Lubrano, A, Oguey-Araymon, S et al. (2011) Protein choices targeting thermogenesis and metabolism. Am J Clin Nutr 93, 525534.
95. Morifuji, M, Ishizaka, M, Baba, S et al. (2010) Comparison of different sources and degrees of hydrolysis of dietary protein: effect on plasma amino acids, dipeptides, and insulin responses in human subjects. J Agric Food Chem 58, 87888797.
96. Pal, S, Ellis, V & Dhaliwal, S (2010) Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. Br J Nutr 104, 716723.
97. Nilsson, M, Holst, JJ & Bjorck, IM (2007) Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 85, 9961004.
98. Holmer-Jensen, J, Mortensen, LS, Astrup, A et al. (2013) Acute differential effects of dietary protein quality on postprandial lipemia in obese non-diabetic subjects. Nutr Res 33, 3440.
99. Holmer-Jensen, J, Hartvigsen, ML, Mortensen, LS et al. (2012) Acute differential effects of milk-derived dietary proteins on postprandial lipaemia in obese non-diabetic subjects. Eur J Clin Nutr 66, 3238.
100. Frid, AH, Nilsson, M, Holst, JJ et al. (2005) Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. Am J Clin Nutr 82, 6975.
101. Ma, J, Stevens, JE, Cukier, K et al. (2009) Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diab Care 32, 16001602.
102. Ma, J, Jesudason, DR, Stevens, JE et al. (2015) Sustained effects of a protein ‘preload’ on glycaemia and gastric emptying over 4 weeks in patients with type 2 diabetes: a randomized clinical trial. Diab Res Clin Pract 108, e31e34.
103. Mortensen, LS, Hartvigsen, ML, Brader, LJ et al. (2009) Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: comparison of whey, casein, gluten, and cod protein. Am J Clin Nutr 90, 4148.
104. Mortensen, LS, Holmer-Jensen, J, Hartvigsen, ML et al. (2012) Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes. Eur J Clin Nutr 66, 799805.
105. Jonker, JT, Wijngaarden, MA, Kloek, J et al. (2011) Effects of low doses of casein hydrolysate on post-challenge glucose and insulin levels. Eur J Intern Med 22, 245248.
106. Geerts, BF, van Dongen, MG, Flameling, B et al. (2011) Hydrolyzed casein decreases postprandial glucose concentrations in T2DM patients irrespective of leucine content. J Diet Suppl 8, 280292.
107. McGregor, RA & Poppitt, SD (2013) Milk protein for improved metabolic health: a review of the evidence. Nutr Metab (Lond) 10, 46.
108. Gouni-Berthold, I, Schulte, DM, Krone, W et al. (2012) The whey fermentation product malleable protein matrix decreases TAG concentrations in patients with the metabolic syndrome: a randomised placebo-controlled trial. Br J Nutr 107, 16941706.
109. Teno, S, Uto, Y, Nagashima, H et al. (200) Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with type 2 diabetes. Diab Care 23, 14011406.
110. Vigna, GB, Delli Gatti, C & Fellin, R (2004) Endothelial function and postprandial lipemia. Nutr Metab Cardiovasc Dis 14, 121127.
111. Thomsen, C, Storm, H, Holst, JJ et al. (2003) Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. Am J Clin Nutr 77, 605611.
112. Thomsen, C, Rasmussen, O, Lousen, T et al. (1999) Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 69, 11351143.
113. Cohen, JC & Schall, R (1988) Reassessing the effects of simple carbohydrates on the serum triglyceride responses to fat meals. Am J Clin Nutr 48, 10311034.
114. Lairon, D, Play, B & Jourdheuil-Rahmani, D (2007) Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism. J Nutr Biochem 18, 217227.
115. Brader, L, Holm, L, Mortensen, L et al. (2010) Acute effects of casein on postprandial lipemia and incretin responses in type 2 diabetic subjects. Nutr Metab Cardiovasc Dis 20, 101109.
116. Olefsky, JM, Crapo, P & Reaven, GM (1976) Postprandial plasma triglyceride and cholesterol responses to a low-fat meal. Am J Clin Nutr 29, 535539.
117. Roche, HM, Zampelas, A, Knapper, JM et al. (1998) Effect of long-term olive oil dietary intervention on postprandial triacylglycerol and factor VII metabolism. Am J Clin Nutr 68, 552560.
118. Claessens, M, van Baak, MA, Monsheimer, S et al. (2009) The effect of a low-fat, high-protein or high-carbohydrate ad libitum diet on weight loss maintenance and metabolic risk factors. Int J Obes (Lond) 33, 296304.
119. Weisse, K, Brandsch, C, Zernsdorf, B et al. (2010) Lupin protein compared to casein lowers the LDL cholesterol:HDL cholesterol-ratio of hypercholesterolemic adults. Eur J Nutr 49, 6571.
120. Chen, Q & Reimer, RA (2009) Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro . Nutrition 25, 340349.
121. Lillefosse, HH, Clausen, MR, Yde, CC et al. (2014) Urinary loss of tricarboxylic acid cycle intermediates as revealed by metabolomics studies: an underlying mechanism to reduce lipid accretion by whey protein ingestion? J Proteome Res 13, 25602570.
122. Zheng, H, Yde, CC, Clausen, MR et al. (2015) Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. J Agric Food Chem 63, 28302839.
123. Tremaroli, V & Backhed, F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489, 242249.
124. Hamad, EM, Taha, SH, Abou Dawood, AG et al. (2011) Protective effect of whey proteins against nonalcoholic fatty liver in rats. Lipids Health Dis 10, 57.
125. Lorenzen, J, Frederiksen, R, Hoppe, C et al. (2012) The effect of milk proteins on appetite regulation and diet-induced thermogenesis. Eur J Clin Nutr 66, 622627.
126. Lorenzen, JK & Astrup, A (2011) Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet. Br J Nutr 105, 18231831.
127. Gacs, G & Barltrop, D (1977) Significance of Ca-soap formation for calcium absorption in the rat. Gut 18, 6468.
128. Govers, MJ, Termont, DS, Van Aken, GA et al. (1994) Characterization of the adsorption of conjugated and unconjugated bile acids to insoluble, amorphous calcium phosphate. J Lipid Res 35, 741748.
129. Biro, FM & Wien, M (2010) Childhood obesity and adult morbidities. Am J Clin Nutr 91, 1499s1505s.
130. Conen, D, Rexrode, KM, Creager, MA et al. (2009) Metabolic syndrome, inflammation, and risk of symptomatic peripheral artery disease in women: a prospective study. Circulation 120, 10411047.
131. Libby, P, Ridker, PM & Hansson, GK (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54, 21292138.
132. Galland, L (2010) Diet and inflammation. Nutr Clin Pract 25, 634640.
133. Zhou, LM, Xu, JY, Rao, CP et al. (2015) Effect of whey supplementation on circulating C-reactive protein: a meta-analysis of randomized controlled trials. Nutrients 7, 11311143.
134. Sugawara, K, Takahashi, H, Kashiwagura, T et al. (2012) Effect of anti-inflammatory supplementation with whey peptide and exercise therapy in patients with COPD. Respir Med 106, 15261534.
135. Bharadwaj, S, Naidu, TA, Betageri, GV et al. (2010) Inflammatory responses improve with milk ribonuclease-enriched lactoferrin supplementation in postmenopausal women. Inflamm Res 59, 971978.
136. Kerasioti, E, Stagos, D, Jamurtas, A et al. (2013) Anti-inflammatory effects of a special carbohydrate-whey protein cake after exhaustive cycling in humans. Food Chem Toxicol 61, 4246.
137. Holmer-Jensen, J, Karhu, T, Mortensen, LS et al. (2011) Differential effects of dietary protein sources on postprandial low-grade inflammation after a single high fat meal in obese non-diabetic subjects. Nutr J 10, 115.
138. Sun, X & Zemel, MB (2007) Calcium and 1,25-dihydroxyvitamin D3 regulation of adipokine expression. Obesity (Silver Spring) 15, 340348.
139. Kalupahana, NS & Moustaid-Moussa, N (2012) The renin-angiotensin system: a link between obesity, inflammation and insulin resistance. Obes Rev 13, 136149.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score