Skip to main content
×
×
Home

Effects of dietary polyphenols on gene expression in human vascular endothelial cells

  • Sonja K. Nicholson (a1), Gregory A. Tucker (a1) and John M. Brameld (a1)
Abstract

Previous studies have shown that consumption of fruit and vegetables plays a role in preventing the onset of CVD. These beneficial effects have been linked to the presence of polyphenolic compounds in plant-derived foods and their antioxidant capacity. It has been hypothesised that polyphenols may also have a direct effect on vascular endothelial cell growth and the expression of genes involved in angiogenesis and other roles of the endothelium. Previous studies in this area have tended to use concentrations of polyphenols that are supraphysiological (1–100 μm). The effects of more physiological concentrations (0·1 μm) of various individual polyphenols on gene expression were therefore investigated in cultured human umbilical vein endothelial cells (HUVEC) using both microarray and quantitative RT–PCR methodologies. Treatment of HUVEC with ferulic acid, quercetin or resveratrol (0·1 μm) resulted in changes to gene expression that for the three treatments amounted to significant (>2-fold) down-regulation of the expression of 363 genes and significant (>2-fold) up-regulation of 233 genes of the 10 000 genes present on the microarray. The majority of these genes were affected by resveratrol. Quantitative RT–PCR studies indicated that resveratrol (0·1 μm) significantly increased the expression of the gene encoding endothelial NO synthase (eNOS), which synthesises the vasodilator molecule NO, and both resveratrol and quercetin decreased expression of the potent vasoconstrictor, endothelin-1 (ET-1), while ferulic acid had no effect. The effects of resveratrol (0·1 μm) were also investigated when HUVEC were under oxidative stress following treatment with H2O2 (0–50 μm), which dose-dependently increased expression of eNOS and ET-1. Resveratrol stimulated eNOS mRNA in the absence of H2O2 and still allowed the increase with H2O2, but the effects were not additive. In contrast, resveratrol blocked the stimulatory effect of H2O2 on ET-1 expression. Hence, resveratrol has potent effects at a physiological concentration (0·1 μm) that would be expected to result in vasodilation and therefore help reduce blood pressure and the risk of CVD.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of dietary polyphenols on gene expression in human vascular endothelial cells
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of dietary polyphenols on gene expression in human vascular endothelial cells
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of dietary polyphenols on gene expression in human vascular endothelial cells
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Ms Sonja Nicholson, fax +44 115 9516122, email sbxskn@nottingham.ac.uk
References
Hide All
1. Allender, S, Peto, V, Scarborough, P, Boxer, A & Rayner, M (2007) Coronary Heart Disease Statistics. London: BHF.
2. Vander, A, Sherman, J & Luciano, D (1998) Human Physiology: The Mechanisms of Body Function, 7th ed., pp. 444448. Columbus, OH: McGraw-Hill.
3. Guyton, AC & Hall, JE (2006) Textbook of Medical Physiology, 9th ed., pp. 252253. Philadelphia, PA: Elsevier Inc.
4. De Backer, G, Ambrosionie, E, Borch-Johnsen, K et al. (2003) European guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 24, 16011610.
6. Brat, P, Georgé, S, Bellamy, A, Du Chaffaut, L, Scalbert, A, Mennen, L, Arnault, N & Amiot, MJ (2006) Daily polyphenol intake in France from fruit and vegetables. J Nutr 136, 23682373.
7. Hertog, MG, Feskens, EJ & Kromhout, D (1997) Antioxidant flavonols and coronary heart disease risk. Lancet 349, 699.
8. Zhao, B, Guo, Q & Xin, W (2001) Free radical scavenging by green tea polyphenols. In Flavonoids and Other Polyphenols. Methods in Enzymology, vol. 335, pp. 217231 [Packer, L and Sies, H, editors]. London: Academic Press.
9. Manach, C, Mazur, A & Scalbert, A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16, 7784.
10. Muntwyler, J, Hennekens, CH, Manson, JE, Buring, JE & Gaziano, JM (2002) Vitamin supplement use in a low-risk population of US male physicians and subsequent cardiovascular mortality. Arch Int Med 162, 14721476.
11. Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomized placebo-controlled trial. Lancet 360, 2333.
12. Hakkinen, S (2000) Flavonols and phenolic acids in berries. PhD Thesis, Kuopio University, Finland.
13. Dey, PM & Harborne, JB (editors) (1989) Methods in Plant Biochemistry, vol. 1: Plant Phenolics, p. 3. London: Academic Press.
14. Manach, C, Scalbert, A, Morand, C, Remesy, C & Jimenez, L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727747.
15. Signorelli, P & Ghidoni, R (2005) Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 16, 449466.
16. Yance, DR & Sagar, SM (2006) Targeting angiogenesis with integrative cancer therapies. Integrative Cancer Therapies 5, 929.
17. Shoskes, DA, Zeitlin, SI, Shahed, A & Rajfer, J (1999) Quercetin in men with category III chronic prostatitis: a preliminary prospective, double blind, placebo-controlled trial. Urology 54, 960963.
18. Lee, YS (2005) Role of NADPH oxidase-mediated generation of reactive oxygen species in the mechanism of apoptosis induced by phenolic acids in HepG2 human hepatoma cells. Arch Pharm Res 28, 11831189.
19. Sudheer, A, Muthukumaran, S, Kalpana, C, Srinivasan, M & Menon, VP (2007) Protective effect of ferulic acid on nicotine-induced DNA damage and cellular changes in cultured rat peripheral blood lymphocytes: A comparison with N-acetylcysteine. Toxicol In Vitro 21, 576585.
20. Guo, S, Yang, S, Taylor, C & Sonenshein, GE (2005) Green tea polyphenol epigallocatechin-3 gallate (EGCG) affects gene expression of breast cancer cells transformed by the carcinogen 7,12-dimethylbenz[a]anthracene. J Nutr 135, 2978S2986S.
21. Borska, S, Gebarowska, E, Wysocka, T, Drag-Zalesińska, M & Zabel, M (2003) Induction of apoptosis by EGCG in selected tumour cell lines in vitro. Folia Histochem Cytobiol 41, 229232.
22. Tosetti, F, Ferrari, N, De Flora, S & Albini, A (2002) Angioprevention: angiogenesis is a common and key target for cancer chemoprevention. FASEB Journal 16, 214.
23. Zern, TL and Fernandez, ML (2005) Cardioprotective effects of dietary polyphenols. J Nutr 135, 22912294.
24. Klabunde, RE (2005) Cardiovascular Physiology Concepts. Philadelphia, PA: Lippencott, Williams and Wilkins.
25. Vickers, J (1995) Endothelial cells and platelet function. PhD Thesis, University of Nottingham.
26. Fox, SI (2004) Human Physiology, 9th ed. Maidenhead, Berks.: McGraw-Hill Higher Education.
27. Levick, JR (editor) (2004) An Introduction to Cardiovascular Physiology, 4th ed., pp. 131132. London: Arnold Publishing.
28. Sherwood, L (2003) Fundamentals of Physiology; A Human Perspective, 3rd ed. London: Thomson, Brooks, Cole.
29. Ambra, R, Rimbach, G, de Pascual Teresa, S, Fuchs, D, Wenzel, U, Daniel, H & Virgili, F (2006) Genistein affects the expression of genes involved in blood pressure regulation and angiogenesis in primary human endothelial cells. Nutr Metab Cardiovasc Dis 16, 3543.
30. Oak, MH, Chataigneau, M, Keravis, T, Chataigneau, T, Beretz, A, Andriantsitohaina, R, Stoclet, JC, Chang, SJ & Schini-Kerth, VB (2003) Red wine polyphenolic compounds inhibit vascular endothelial growth factor expression in vascular smooth muscle cells by preventing the activation of the p38 mitogen-activated protein kinase pathway. Arterioscler Thromb Vasc Biol 23, 10011007.
31. Wallerath, T, Li, H, Godtel-Ambrust, U, Schwarz, PM & Forstermann, U (2005) A blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase. Nitric Oxide 12, 97104.
32. Fagan, KA, McMurthy, IF & Rodman, DM (2001) Role of endothelin-1 in lung disease. Respir Res 2, 90101.
33. Diebolt, M, Bucher, B & Andriantsitohaina, R (2001) Wine polyphenols decrease blood pressure, improve NO vasodilation, and induce gene expression. Hypertension 38, 159165.
34. Noé, V, Peñuelas, S, Lamuela-Raventós, RM, Permanyer, J, Ciudad, CJ & Izquierdo-Pulido, M (2004) Epicatechin and a Cocoa Polyphenolic Extract Modulate Gene Expression in Human Caco-2 Cells. J Nutr 134, 25092516.
35. Iijima, K, Yoshizumi, M & Ouchi, Y (2003) Effects of red wine polyphenols on vascular smooth muscle cells function-molecular mechanisms of the ‘French paradox’. Mech Ageing Dev 123, 10331039.
36. Walle, T, Hsieh, F, DeLegge, MH, Oatis, JE & Walle, UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32, 13771382.
37. Wallerath, T, Poleo, D, Li, H & Forstermann, U (2003) Red wine increases the expression of human endothelial nitric oxide synthase: a mechanism that may contribute to its beneficial cardiovascular effects. J Am Coll Cardiol 41, 471478.
38. Corder, R, Douthwaite, JA, Lees, DM, Khan, NQ, Viseu Dos Santos, AC, Wood, EG & Carrier, MJ (2001) Health: Endothelin-1 synthesis reduced by red wine. Nature 414, 863864.
39. Liu, JC, Chen, JJ, Chan, P, Cheng, CF & Cheng, TH (2003) Inhibition of cyclic strain-induced endothelin-1 gene expression by resveratrol. Hypertension 42, 11981205.
40. Chao, HH, Juan, SH, Liu, JC, Yang, HY, Yang, E, Cheng, TH & Shyu, KG (2005) Resveratrol inhibits angiotensin II-induced endothelin-1 gene expression and subsequent proliferation in rat aortic smooth muscle cells. Eur J Pharmacol 515, 19.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed