Skip to main content Accessibility help
×
Home

Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralization

  • Ran Namgung (a1) and Reginald C. Tsang (a2)

Abstract

Several factors have been found recently to have a significant impact on newborn bone mineral content (BMC) and developing fetal bone. Recently we showed that maternal vitamin D deficiency may affect fetal bone mineralization. Korean winter-born newborn infants had extremely low serum 25-hydroxyvitamin D (25-OHD), high serum cross-linked carboxy-terminal telopeptide of type I collagen (ICTP; a bone resorption marker), and markedly lower (8 %) total body BMC than summer-born newborn infants. Infant total body BMC was positively correlated with cord serum 25-OHD and inversely correlated with ICTP, which was also negatively correlated with vitamin D status. In three separate studies on North American neonates we found markedly lower (8–12 %) BMC in summer newborn infants compared with winter newborn infants, the opposite of the findings for Korean neonates. The major reason for the conflicting BMC results might be the markedly different maternal vitamin D status of the North American and Korean subjects. Recently, we found evidence of decreased bone formation rates in infants who were small-for-gestational age (SGA) compared with infants who were appropriate-for-gestational age; we reported reduced BMC, cord serum osteocalcin (a marker of bone formation) and 1,25-dihydroxyvitamin D (the active metabolite of vitamin D), but no alterations in indices of fetal bone collagen metabolism. In theory, reduced utero-placental blood flow in SGA infants may result in reduced transplacental mineral supply and reduced fetal bone formation. Infants of diabetic mothers (IDM) have low BMC at birth, and infant BMC correlated inversely with poor control of diabetes in the mother, specifically first trimester maternal mean capillary blood glucose concentration, implying that factors early in pregnancy might have an effect on fetal BMC. The low BMC in IDM may be related to the decreased transplacental mineral transfer. Cord serum ICTP concentrations were higher in IDM than in control subjects, implying increased intrauterine bone resorption. BMC is consistently increased with increasing body weight and length in infants. Race and gender differences in BMC appear in early life, but not at birth. Ethanol consumption and smoking by the mother during pregnancy affect fetal skeletal development.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralization
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralization
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralization
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor R. C. Tsang, fax +1 513 558 7770, email tsangrc@email.uc.edu

References

Hide All
Abrams, SA, O'Brien, KO, Liang, LK & Stuff, JE (1995) Differences in calcium absorption and kinetics between black and white girls. Journal of Bone Mineral Research 10, 829833.
Aitken, JM, Anderson, JB & Horton, PW (1973) Seasonal variations in bone mineral content after menopause. Nature 241, 5960.
Bergstralh, EJ, Sinaki, M, Offord, KP, Wahner, HW & Melton, LJ (1990) Effect of season on physical activity score, back extensor muscle strength, and lumbar bone mineral density. Journal of Bone Mineral Research 5, 371377.
Bernstein, IM, DeSouza, M & Copeland, KC (1991) Insulin-like growth factor I in substrate-deprived, growth-retarded fetal rats. Pediatric Research 30, 154157.
Bouillon, RA, Auwerx, JD, Lissens, WD & Pelemans, WK (1987) Vitamin D status in the elderly: seasonal substrate deficiency causes 1,25-dihydroxycholecalciferol deficiency. American Journal of Clinical Nutrition 45, 755763.
Brooke, OG, Brown, IRF, Bone, CDM, Carter, ND, Cleeve, HJW, Maxwell, JD, Robinson, VP & Winder, SM (1980) Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. British Medical Journal 280, 751754.
Burgeson, RE (1988) New collagen, new concepts. Annual Review of Cell Biology 4, 551557.
Chunga Vega, F, Gomez de Tejada, MJ, Gonzalez Hachero, J, Perez Cano, R & Coronel Rodriquez, C (1996) Low bone mineral density in small for gestational age infants: correlation with cord blood zinc concentrations. Archives of Disease in Childhood 75, F126F129.
Comar, CL (1956) Radiocalcium studies in pregnancy. Annals of the New York Academy of Sciences 64, 281298.
Cornish, J, Callon, KE & Reid, IR (1996) Insulin increases histomorphometric indices of bone formation in vivo. Calcified Tissue International 59, 492495.
Dawson-Hughes, B, Dallal, Ge, Krall, EA, Harris, S, Sokoll, LJ & Falconer, G (1991) Effect of vitamin D supplementation on wintertime and overall bone loss in healthy postmenopausal women. Annals of Internal Medicine 115, 505512.
Demarini, S, Specker, BL, Sierra, RI, Miodovnik, M & Tsang, RC (1995) Evidence of increased intrauterine bone resorption in term infants of mothers with insulin-dependent diabetes. Journal of Pediatrics 126, 796798.
Demignon, J & Robut-Bonneton, C (1988) Effects of experimental diabetes on the vitamin D metabolism of pregnant rats and their fetuses. Calcified Tissue International 42, 127135.
Durand, D, Barlet, JP & Braithwaite, GD (1983a) The influence of 1,25-dihydroxycholecalciferol on the mineral content of foetal guinea-pigs. Reproduction Nutrition Development 23, 235244.
Durand, D, Braithwaite, GD & Barlet, JP (1983b) The effect of 1-a-hydroxycholecalciferol on the placental transfer of calcium and phosphate in sheep. British Journal of Nutrition 49, 475480.
Eriksen, EF, Charles, P, Melsen, F, Mosekilde, L, Risteli, L & Risteli, J (1993) Serum markers of type I collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry. Journal of Bone Mineral Research 8, 127132.
Fonsca, V, Agnew, JE, Nag, D & Dandona, P (1988) Bone density and cortical thickness in nutritional vitamin D deficiency: effect of secondary hyperparathyroidism. Annals of Clinical Biochemistry 25, 271274.
Habek, D (1998) Effect of smoking on the feto-placental unit. Lijec Vjesn 120, 215219.
Harrast, SD & Kalkwarf, HJ (1998) Effects of gestational age, maternal diabetes, and intrauterine growth retardation on markers of fetal bone turnover in amniotic fluid. Calcified Tissue International 62, 205208.
Husain, SM, Birdsey, TJ, Glazier, JD, Mughal, MZ, Garland, HO & Sibley, CP (1994) Effect of diabetes mellitus on maternofetal flux of calcium and magnesium and calbindin9K mRNA expression in rat placenta. Pediatric Research 35, 376381.
Jones, G, Riley, M & Dwyer, T (1999) Maternal smoking during pregnancy, growth, and bone mass in prepubertal children. Journal of Bone Mineral Research 14, 146151.
Keiver, K, Ellis, L, Anzarut, A & Weinberg, J (1997) Effect of prenatal ethanol exposure on fetal calcium metabolism. Alcoholism Clinical and Experimental Research 21, 16121618.
Keiver, K, Herbert, L & Weinberg, J (1996) Effect of maternal ethanol consumption on maternal and fetal calcium metabolism. Alcoholism Clinical and Experimental Research 20, 13051312.
Kollee, L, Mannens, L, Trijbels, J, Veerkamp, J, Jassen, A & Haard-Hustings, H (1979) Experimental intrauterine growth retardation in the rat; evaluation of the Wigglesworth model. Early Human Development 3, 295300.
Krølner, B (1983) Seasonal variation of lumbar spine bone mineral content in normal women. Calcified Tissue International 35, 145147.
Kuroda, E, Okano, T & Mizuno, N (1981) Plasma levels of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in maternal, cord and neonatal blood. Journal of Nutritional Science and Vitaminology 27, 5565.
Lapillonne, A, Brillon, P, Claris, O, Chatelain, PG, Delmas, PD & Salle, BL (1997a) Body composition in appropriate and in small for gestational age infants. Acta Paediatrica 86, 196200.
Lapillonne, A, Guerion, S, Braillon, P, Claris, O, Delmas, PD & Salle, BL (1997b) Diabetes during pregnancy does not alter whole body bone mineral content in infants. Journal of Clinical Endocrinology and Metabolism 82, 39933997.
Lassarre, C, Hardouin, S, Daffos, F, Forestier, F, Frankenne, F & Binoux, M (1991) Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatric Research 29, 219225.
Levine, ME, Boisseau, VC & Aviolo, LV (1976) Effects of diabetes mellitus on bone mass in juvenile and adult onset diabetes. New England Journal of Medicine 294, 241245.
Li, JY, Specker, BL, Ho, ML & Tsang, RC (1989) Bone mineral content in black and white children 1 to 6 years of age. American Journal of Diseases in Children 143, 13461349.
Luciano, A, Bolognani, M, Biondani, P, Ghizzi, C, Zoppi, G & Signori, E (1998) The influence of maternal passive and light active smoking on intrauterine growth and body composition of the newborn. European Journal of Clinical Nutrition 52, 760763.
Lukert, BP, Carey, M, McCarty, B, Tiemann, S, Goodnight, L, Helm, M, Hassanein, R, Stevenson, C, Stoskopf, M & Doolan, L (1987) Influence of nutritional factors on calcium regulating hormones and bone loss. Calcified Tissue International 40, 119125.
Mehta, KC, Kalkwarf, HJ, Mimouni, F, Khoury, J & Tsang, RC (1998) Randomized trial of magnesium administration to prevent hypocalcemia in infants of diabetic mothers. Journal of Perinatology 18, 352356.
Melhus, H, Michalsson, K, Holmberg, L, Wolk, A & Ljunghall, S (1999) Smoking, antioxidant vitamins, and the risk of hip fracture. Journal of Bone Mineral Research 14, 129135.
Mimouni, F, Steichen, JJ, Tsang, RC, Hertzberg, V & Miodovnik, M (1988) Decreased bone mineral content in infants of diabetic mothers. American Journal of Perinatology 5, 339343.
Minton, SD, Steichen, JJ & Tsang, RC (1983) Decreased bone mineral content in small for gestational age infants compared with appropriate for gestational age infants: normal serum 25-hydroxyvitamin D and decreasing parathyroid hormone. Pediatrics 71, 383388.
Moncrieff, M & Fadahunsi, TO (1974) Congenital rickets due to maternal vitamin D deficiency. Archives of Disease in Childhood 49, 810811.
Mora, S, Prinster, C, Bellini, A, Weber, G, Proverbio, MC, Puzzovio, M, Bianchi, C & Chiumello, G (1997) Bone turnover in neonates: Changes of urinary excretion rate of collagen type I cross-linked peptides during the first days of life and influence of gestational age. Bone 20, 563566.
Mughal, MZ, Ross, R & Tsang, RC (1989) Clearance of calcium across in situ perfused placentas in intrauterine growth-retarded rat fetuses. Pediatric Research 24, 420422.
Namgung, R, Mimouni, F, Campaigne, BN, Ho, ML & Tsang, RC (1992) Low bone mineral content in summer-born compared with winter-born infants. Journal of Pediatric Gastroenterology and Nutrition 15, 285288.
Namgung, R, Tsang, RC, Lee, C, Han, DG, Ho, ML & Sierra, RI (1998) Low total body bone mineral content and high bone resorption in Korean winter-born versus summer-born newborn infants. Journal of Pediatrics 132, 421425.
Namgung, R, Tsang, RC, Sierra, RI & Ho, ML (1996) Normal serum indices of bone collagen biosynthesis and degradation in small for gestational age infants. Journal of Pediatric Gastroenterology and Nutrition 23, 224228.
Namgung, R, Tsang, RC, Specker, BL, Sierra, RI & Ho, ML (1993) Reduced serum osteocalcin and 1,25-dihydroxyvitamin D concentrations and low bone mineral content in small for gestational age infants: Evidence of decreased bone formation rates. Journal of Pediatrics 122, 269275.
Namgung, R, Tsang, RC, Specker, BL, Sierra, RI & Ho, ML (1994) Low bone mineral content and high serum osteocalcin and 1,25(OH)2 vitamin D in summer- versus winter-born newborn infants: An early fetal effect? Journal of Pediatric Gastroenterology and Nutrition 19, 220227.
Ogeuh, O, Khastgir, G, Studd, J, Jones, J, Alaghband-Zadeh, J & Johnson, MR (1998) The relationship of fetal serum markers of bone metabolism to gestational age. Early Human Development 29, 109112.
Okonofua, F, Menon, RK, Houlder, S, Thomas, M, Robinson, D, O'Brien, S & Dandona, P (1987) Calcium, vitamin D and parathyroid hormone relationships in pregnant Caucasian and Asian women and their neonates. Annals of Clinical Biochemistry 24, 2228.
Ooms, ME, Lips, P, Roos, JC, van der Vijgh, WJF, Popp-Snijders, C, Bezemer, PD & Bouter, LM (1995) Vitamin D status and sex hormone binding globulin: determinants of bone turnover and bone mineral density in elderly women. Journal of Bone Mineral Research 10, 11771184.
Orwoll, ES & Meier, DE (1986) Alterations in calcium, vitamin D, and parathyroid hormone physiology in normal men with aging: relationship to the development of senile osteopenia. Journal of Clinical Endocrinology and Metabolism 63, 12621269.
Parfitt, AM, Simon, LS, Villanueva, AR & Krane, SM (1987) Procollagen type I carboxyterminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with iliac bone formation rates and comparison with total alkaline phosphatase. Journal of Bone Mineral Research 2, 427436.
Peacock, M, Liu, G, Carey, M, Ambrosius, W, Turner, CH, Hui, S & Johnston, CC Jr (1998) Bone mass and structure at the hip in men and women over the age of 60 years. Osteoporosis International 8, 231239.
Petersen, F, Gotfredsen, A & Knudsen, FU (1989) Total body bone mineral in light-for-gestational-age infants and appropriate-for-gestational-age infants. Acta Paediatrica Scandinavica 78, 347350.
Pohlandt, F & Mathers, N (1989) Bone mineral content of appropriate and light for gestational age preterm and term newborn infants. Acta Paediatrica Scandinavica 78, 835839.
Rupich, RC, Specker, BL, Lieuw-A-Fam, N & Ho, M (1996) Gender and race differences in bone mass during infancy. Calcified Tissue International 58, 395397.
Sampson, HW (1998) Effect of alcohol consumption on adult and aged bone: a histomorphometric study of the rat animal model. Alcoholism Clinical and Experimental Research 22, 20292034.
Sampson, HW, Hebert, VA, Booe, HL & Champney, TH (1998) Effect of alcohol consumption on adult and aged bone: composition, morphology, and hormone levels of a rat animal model. Alcoholism Clinical and Experimental Research 22, 17461753.
Sampson, HW, Perks, N, Champney, TH & DeFee, B II (1996) Alcohol consumption inhibits bone growth and development in young actively growing rats. Alcoholism Clinical and Experimental Research 20, 13751384.
Scharla, SH, Scheidt-Nave, C, Leidig, G, Woitge, H, Wuster, C, Seibel, MJ & Ziegler, R (1996) Lower serum 25-hydroxyvitamin D is associated with increased bone resorption markers and lower bone density at the proximal femur in normal females: a population-based study. Experimental and Clinical Endocrinology and Diabetes 104, 289292.
Seller, MJ & Bnait, KS (1995) Effects of tobacco smoke inhalation on the developing mouse embryo and fetus. Reproductive Toxicology 9, 449459.
Sherman, SS, Tobin, JD, Hollis, BW, Gundberg, CM, Roy, TA & Plato, CC (1992) Biochemical parameters associated with low bone density in healthy men and women. Journal of Bone Mineral Research 7, 11231130.
Specker, BL, Ho, ML, Oestreich, A, Yin, TA, Shui, QM, Chen, XC & Tsang, RC (1992) Prospective study of vitamin D supplementation and rickets in China. Journal of Pediatrics 120, 733739.
Steichen, JJ, Kaplan, B, Edwards, N & Tsang, RC (1976) Bone mineral content in full-term infants measured by direct photon absorptiometry. American Journal of Roentgenology 126, 12831285.
Steichen, JJ, Tsang, RC & Ho, ML (1981) Perinatal magnesium, calcium and 1,25-dihydroxyvitamin D in relation to prospective randomized management of maternal diabetes. Pediatric Research 15, 683A.
Thieriot-Prevost, G, Boccara, JF, Francoual, C, Badoual, J & Job, JC (1988) Serum insulin-like growth factor I and serum growth-promoting activity during the first postnatal year in infants with intrauterine growth retardation. Pediatric Research 24, 380382.
Tsang, RC, Kleinman, L, Sutherland, JM & Light, IJ (1972) Hypocalcemia in infants of diabetic mothers: studies in Ca, P and Mg metabolism and in parathormone responsiveness. Journal of Pediatrics 80, 384395.
Unterman, TG, Simmons, RC, Glick, RP & Ogata, ES (1993) Circulating levels of insulin, insulin-like growth factor-I (IGF-I), IGF-II, and IGF-binding proteins in the small for gestational age fetal rat. Endocrinology 132, 327336.
Verhaeghe, J, Bouillon, R, Lissens, W, Visser, WJ & Van Assche, FA (1988) Diabetes and low Ca-P diets have opposite effects on adult and fetal bone and mineral metabolism. American Journal of Physiology 254, E496E504.
Verhaeghe, J, Bouillon, R, Nyomba, BL, Lissens, W & Van Assche, FA (1986) Vitamin D and bone mineral homeostasis during pregnancy in the diabetic BB rat. Endocrinology 118, 10191025.
Verhaeghe, J, Van Bree, R, Van Herck, E, Rummens, K, Vercruysse, L, Bouillon, R & Pijnenborg, R (1999) Pathogenesis of fetal hypomineralization in diabetic rats: evidence for delayed bone maturation. Pediatric Research 45, 209217.
Verity, CM, Burman, D, Beadle, PC, Holton, JB & Morris, A (1981) Seasonal changes in perinatal vitamin D metabolism: maternal and cord blood biochemistry in normal pregnancies. Archives of Disease in Childhood 56, 943948.
Weinberg, J, D'Alquen, G & Bezio, S (1990) Interactive effects of ethanol intake and maternal nutritional status on skeletal development of fetal rats. Alcohol 7, 383388.
Wigglesworth, J (1964) Experimental growth retardation in the foetal rat. Journal of Pathology and Bacteriology 88, 113.
Woitge, HW, Scheidt-Nave, C, Kissling, C, Leidig-Bruckner, G, Meyer, K, Grauer, A, Scharla, SH, Ziegler, R & Seibel, MJ (1998) Seasonal variation of biochemical indexes of bone turnover: results of a population-based study. Journal of Clinical Endocrinology and Metabolism 83, 6875.
Zaren, B, Lindmark, G & Gebre-Medhin, M (1996) Maternal smoking and body composition of the newborn. Acta Paediatrica 85, 213219.
Zittermann, A, Scheld, K & Stehle, P (1998) Seasonal variations in vitamin D status and calcium absorption do not influence bone turnover in young women. European Journal of Clinical Nutrition 52, 501506.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed