Skip to main content Accessibility help
×
×
Home

Glutathione and immune function

  • Wulf Dröge (a1) and Raoul Breitkreutz (a1)
Abstract

The immune system works best if the lymphoid cells have a delicately balanced intermediate level of glutathione. Even moderate changes in the intracellular glutathione level have profound effects on lymphocyte functions. Certain functions, such as the DNA synthetic response, are exquisitely sensitive to reactive oxygen intermediates and, therefore, are favoured by high levels of the antioxidant glutathione. Certain signal pathways, in contrast, are enhanced by oxidative conditions and favoured by low intracellular glutathione levels. The available evidence suggests that the lymphocytes from healthy human subjects have, on average, an optimal glutathione level. There is no indication that immunological functions such as resistance to infection or the response to vaccination may be enhanced in healthy human subjects by administration of glutathione or its precursor amino acid cysteine. However, immunological functions in diseases that are associated with a cysteine and glutathione deficiency may be significantly enhanced and potentially restored by cysteine supplementation. This factor has been studied most extensively in the case of human immunodeficiency virus (HIV)-infected patients who were found to experience, on average, a massive loss of S equivalent to a net loss of approximately 4 g cysteine/d. Two randomized placebo-controlled trials have shown that treatment of HIV-infected patients with N-acetyl-cysteine caused in both cases a significant increase in all immunological functions under test, including an almost complete restoration of natural killer cell activity. It remains to be tested whether cysteine supplementation may be useful also in other diseases and conditions that are associated with a low mean plasma cystine level and impaired immunological functions.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glutathione and immune function
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glutathione and immune function
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glutathione and immune function
      Available formats
      ×
Copyright
Corresponding author
Corresponding Author: Professor Wulf Dröge, fax +49 6221 423746, email W.Droege@dkfz-heidelberg.de
References
Hide All
Adler, V, Yin, Z, Tew, KD & Ronai, Z (1999) Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18, 61046111.
Akerlund, B, Jarstrand, C, Lindeke, B, Sönnerborg, A, Akerblad, A-Ac, & Rasool, O (1996) Effect of N-acetylcysteine (NAC) treatment on HIV-1 infection: a double-blind placebo-controlled trial. European Journal of Clinical Pharmacology 50, 457461.
Allison, JB, Anderson, JA & Seeley, RD (1947) Some effects of methionine on the utilization of nitrogen in the adult dog. Journal of Nutrition 33, 361370.
Beutler, E (1989) Nutritional and metabolic aspects of glutathione. Annual Review of Nutrition 9, 287302.
Breithaupt, T, Eylar, EH, Baez, I, Vasquez, A, Colon-Martinez, S, Rodriquez, J & Kesseler, M (1996) N-acetylcysteine (NAC) reverses the supposed mitogenic responses of CD4+ and CD8+ T cells from aged rhesus monkeys. FASEB Journal 10, 1849 Abstr.
Breitkreutz, R, Holm, S, Pittack, N, Beichert, M, Babylon, A, Yodoi, J & Dröge, W (2000 a) Massive loss of sulphur in HIV infection. AIDS Research and Human Retroviruses 3, 203209.
Breitkreutz, R, Pittak, N, Nebe, CT, Schuster, D, Brust, J, Beichert, M, Hack, V, Daniel, V, Edler, L & Dröge, W (2000 b) Improvement of immune functions in HIV infection by sulfur supplementation – two randomized trials. Journal of Molecular Medicine 78, 5562.
Buhl, R, Holroyd, K, Mastrangeli, A, Cantin, AM, Jaffe, HA, Wells, FB, Saltini, C & Crystal, RG (1989) Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet ii, 12941298.
De Quay, B, Malinverni, R & Lauterburg, BH (1992) Glutathione depletion in HIV-infected patients: role of cysteine deficiency and effect of oral N-acetylcysteine. AIDS 6, 815819.
Dröge, W (1989) Metabolische Störungen bei HIV-Infektion (Metabolic disturbances with HIV infection). In Project News , no. 2, p. 4. Berlin, Germany: AIDS-Zentrum des Bundesgesundheitsamtes.
Dröge, W & Breitkreutz, R (1999) N-acetyl-cysteine in the therapy of HIV-positive patients. Current Opinion in Clinical Nutrition and Metabolic Care 2, 493498.
Dröge, W, Eck, H-P, & Mihm, S (1992) HIV-induced cysteine deficiency and T cell dysfunctions – a rationale for treatment with N-acetyl-cysteine. Immunology Today 13, 211214.
Dröge, W, Eck, H-P, Näher, H, Pekar, U & Daniel, V (1988) Abnormal amino acid concentrations in the blood of patients with acquired immune deficiency syndrome (AIDS) may contribute to the immunological defect. Biological Chemistry Hoppe-Seyler 369, 143148.
Dröge, W & Holm, E (1997) Role of cysteine and glutathione in HIV infection and other diseases associated with muscle wasting and immunological dysfunction. FASEB Journal 11, 10771089.
Dröge, W, Schulze-Osthoff, K, Mihm, S, Galter, D, Schenk, H, Eck, H-P, Roth, S & Gmünder, H (1994) Function of glutathione and glutathione disulfide in immunology and immunopathology. FASEB Journal 8, 11311138.
Eck, H-P, Gmünder, H, Hartmann, M, Petzoldt, D, Daniel, V & Dröge, W (1989) Low concentrations of acid soluble thiol (cysteine) in the blood plasma of HIV-1 infected patients. Biological Chemistry Hoppe-Seyler 370, 101108.
Eck, H-P, Stahl-Hennig, H, Hunsmann, G & Dröge, W (1991) Metabolic disorder as an early consequence of simian immunodeficiency virus infection in rhesus monkeys. Lancet 338, 346347.
Fanger, MW, Hart, DA, Wells, JV & Nisonoff, A (1970) Enhancement by reducing agents of the transformation of human and rabbit peripheral lymphocytes. Journal of Immunology 105, 10431045.
Galter, D, Mihm, S & Droge, W (1994) Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. European Journal of Biochemistry 221, 639648.
Gmünder, H & Dröge, W (1991) Differential effects of glutathione depletion on T cell subsets. Cellular Immunology 138, 229237.
Gmünder, H, Eck, H-P, Benninghoff, B, Roth, S & Dröge, W (1990 a) Macrophages regulate intracellular glutathione levels of lymphocytes. Cellular Immunology 129, 3246.
Gmünder, H, Roth, S, Eck, H-P, Gallas, H, Mihm, S & Dröge, W (1990 b) Interleukin-2 mRNA expression, lymphokine production and DNA synthesis in glutathione-depleted T cells. Cellular Immunology 130, 520528.
Gross, A, Hack, V, Stahl-Hennig, C & Dröge, W (1996) Elevated hepatic γ-glutamylcysteine synthetase activity and abnormal sulfate levels in liver and muscle tissue may explain abnormal cysteine and glutathione levels in SIV-infected rhesus macaques. AIDS Research and Human Retroviruses 12, 16391641.
Hack, V, Schmid, D, Breitkreutz, R, Stahl-Hennig, C, Drings, P, Kinscherf, R, Taut, F, Holm, E & Dröge, W (1997) Cystine levels, cystine flux and protein catabolism in cancer cachexia, HIV/SIV infection and senescence. FASEB Journal 11, 8492.
Hamilos, DL & Wedner, HJ (1985) The role of glutathione in lymphocyte activation. I. Comparison of inhibitory effects of buthionine sulfoximine and 2-cyclohexene-1-one by nuclear size transformation. Journal of Immunology 135, 27402747.
Herzenberg, LA, De Rosa, SC, Dubs, JG, Roederer, M, Anderson, MT, Ela, SW, Deresinski, SC & Herzenberg, LA (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proceedings of the National Academy of Sciences USA 94, 19671972.
Hortin, GL, Landt, M & Powderly, WG (1994) Changes in plasma amino acid concentrations in response to HIV-1 infection. Clinical Chemistry 40, 785789.
Ishii, T, Sugita, Y & Bannai, S (1987) Regulation of glutathione levels in mouse spleen lymphocytes by transport of cysteine. Journal of Cellular Physiology 133, 330336.
Jahoor, F, Jackson, A, Gazzard, B, Philips, G, Sharpstone, D, Frazer, ME & Heird, W (1999) Erythrocyte glutathione deficiency in symptom-free HIV infection is associated with decreased synthesis rate. American Journal of Physiology 276, E205E211.
Kinscherf, R, Fischbach, T, Mihm, S, Roth, S, Hohenhaus-Sievert, E, Weiss, C, Edler, L, Bärtsch, P & Dröge, W (1994) Effect of glutathione depletion and oral N-acetyl-cysteine treatment on CD4+ and CD8+ cells. FASEB Journal 8, 448451.
Lim, J-S, Eck, H-P, Gmünder, H & Dröge, W (1992) Expression of increased immunogenicity by thiol releasing tumor variants. Cellular Immunology 140, 345356.
Los, M, Schenk, H, Hexel, K, Baeuerle, PA, Dröge, W & Schulze-Osthoff, K (1995) IL-2 gene expression and NF-κB activation through CD28 requires reactive oxygen production by 5-lipoxygenase. EMBO Journal 14, 37313740.
Lubaszewska, S, Pastuszewska, B & Kielanowski, J (1973) Effect of methionine supplementation of a protein-free diet on the nitrogen excretion in rats and pigs. Tierphysiologie, Tierernährung und Futtormittelkunde 31, 120128.
Meister, A (1983) Selective modification of glutathione metabolism. Science 220, 471477.
Meister, A & Anderson, ME (1983) Glutathione. Annual Review of Biochemistry 52, 711760.
Meyer, M, Schreck, R & Baeuerle, PA (1993) H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO Journal 12, 20052015.
Mihm, S, Ennen, J, Pessara, U, Kurth, R & Dröge, W (1991) Inhibition of HIV-1 replication and NF-κB activity by cysteine and cysteine derivatives. AIDS 5, 497503.
Nakamura, H, Nakamura, K & Yodoi, J (1997) Redox regulation of cellular activation. Annual Review of Immunology 15, 351369.
Okumura, J & Muramatsu, T (1978) Effect of dietary methionine and arginine on the excretion of nitrogen in cocks fed on a protein-free diet. Japanese Poultry Science 15, 6973.
Pacht, ER, Diaz, P, Clanton, T, Hart, J & Gadek, JE (1997) Alveolar fluid glutathione decreases in asymptomatic HIV-seropositive subjects over time. Chest 112, 785788.
Roederer, M, Staal, FJT, Osada, H & Herzenberg, LA (1991) CD4 and CD8 T cells with high intracellular glutathione levels are selectively lost as HIV infection progresses. International Immunology 3, 933937.
Roth, S & Dröge, W (1987) Regulation of T cell activation and T cell growth factor (TCGF) production by hydrogen peroxide. Cellular Immunology 108, 417424.
Roth, S & Dröge, W (1991) Regulation of interleukin-2 production, interleukin 2 mRNA expression and intracellular glutathione levels in ex vivo derived T lymphocytes by lactate. European Journal of Immunology 21, 19331937.
Roth, S & Dröge, W (1994) Glutathione reverses the inhibition of T cell responses by superoptimal numbers of 'non- professional' antigen presenting cells. Cellular Immunology 155, 183194.
Schenk, H, Klein, M, Erdbrügger, W, Dröge, W & Schulze-Osthoff, K (1994) Distinct effects of thioredoxin and antioxidants on the activation of NFκB and AP-1. Proceedings of the National Academy of Sciences USA 91, 16721676.
Schreck, R, Rieber, P & Baeuerle, PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NFκB transcription factor and HIV-1. EMBO Journal 10, 22472258.
Staal, FJ, Ela, SW, Roederer, M, Anderson, MT, Herzenberg, LA & Herzenberg, LA (1992) Glutathione deficiency and human immunodeficiency virus infection. Lancet 339, 909912.
Walmsley, SL, Winn, LM, Harrosin, ML, Uetrecht, JP & Wells, PG (1997) Oxidative stress and thiol depletion in plasma and peripheral blood lymphocytes from HIV-infected patients: toxicological and pathological implications. AIDS 11, 16891697.
Webel, DM & Baker, DH (1999) Cystine is the first limiting amino acid for utilization of endogenous amino acids in chicks fed a protein-free diet. Nutrition Research 19, 569577.
Yoshida, A & Moritoki, K (1974) Nitrogen sparing action of methionine and threonine in rats receiving a protein-free diet. Nutrition Reports International 9, 159168.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed