Skip to main content

The impact of obesity on the immune response to infection

  • J. Justin Milner (a1) and Melinda A. Beck (a1)

There is strong evidence indicating that excess adiposity negatively impacts immune function and host defence in obese individuals. This is a review of research findings concerning the impact of obesity on the immune response to infection, including a discussion of possible mechanisms. Obesity is characterised by a state of low-grade, chronic inflammation in addition to disturbed levels of circulating nutrients and metabolic hormones. The impact of these metabolic abnormalities on obesity-related comorbidities has undergone intense scrutiny over the past decade. However, relatively little is known of how the immune system and host defence are influenced by the pro-inflammatory and excess energy milieu of the obese. Epidemiological data suggest obese human subjects are at greater risk for nosocomial infections, especially following surgery. Additionally, the significance of altered immunity in obese human subjects is emphasised by recent studies reporting obesity to be an independent risk factor for increased morbidity and mortality following infection with the 2009 pandemic influenza A (H1N1) virus. Rodent models offer important insight into how metabolic abnormalities associated with excess body weight can impair immunity. However, more research is necessary to understand the specific aspects of immunity that are impaired and what factors are contributing to reduced immunocompetence in the obese. Additionally, special consideration of how infection in this at-risk population is managed is required, given that this population may not respond optimally to antimicrobial drugs and vaccination. Obesity impacts millions globally, and greater understanding of its associated physiological disturbances is a key public health concern.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The impact of obesity on the immune response to infection
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The impact of obesity on the immune response to infection
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The impact of obesity on the immune response to infection
      Available formats
Corresponding author
*Corresponding author: Dr Melinda A. Beck, fax +1 919 843 0776, email
Hide All
1.World Health Organization (2011) Obesity and Overweight. (accessed 20 August 2011).
2.Rocha, VZ & Libby, P (2009) Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol 6, 399409.
3.Odegaard, JI & Chawla, A (2008) Mechanisms of macrophage activation in obesity-induced insulin resistance. Nat Clin Pract Endocrinol Metab 4, 619626.
4.Nieman, DC, Henson, DA, Nehlsen-Cannarella, SL et al. (1999) Influence of obesity on immune function. J Am Diet Assoc 99, 294299.
5.Ghanim, H, Aljada, A, Hofmeyer, D et al. (2004) Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation 110, 15641571.
6.Geerlings, SE & Hoepelman, AIM (1999) Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 26, 259265.
7.Farooqi, IS, Matarese, G, Lord, GM et al. (2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110, 10931104.
8.Yang, H, Youm, YH, Vandanmagsar, B et al. (2009) Obesity accelerates thymic aging. Blood 114, 38033812.
9.Falagas, ME & Kompoti, M (2006) Obesity and infection. Lancet Infect Dis 6, 438446.
10.Vilar-Compte, D, Mohar, A, Sandoval, S et al. (2000) Surgical site infections at the National Cancer Institute in Mexico: a case-control study. Am J Infect Control 28, 1420.
11.Dossett, LA, Dageforde, LA, Swenson, BR et al. (2009) Obesity and site-specific nosocomial infection risk in the intensive care unit. Surg Infect (Larchmt) 10, 137142.
12.Ylöstalo, P, Suominen-Taipale, L, Reunanen, A et al. (2008) Association between body weight and periodontal infection. J Clin Periodontol 35, 297304.
13.Jedrychowski, W, Maugeri, U, Flak, E et al. (1998) Predisposition to acute respiratory infections among overweight preadolescent children: an epidemiologic study in Poland. Public Health 112, 189195.
14.Dossett, LA, Heffernan, D, Lightfoot, M et al. (2008) Obesity and pulmonary complications in critically injured adults. Chest 134, 974980.
15.Bochicchio, GV, Joshi, M, Bochicchio, K et al. (2006) Impact of obesity in the critically ill trauma patient: a prospective study. J Am Coll Surg 203, 533538.
16.Pi-Sunyer, FX (2002) The medical risks of obesity. Obesity Surg 12, Suppl. 1, 6–11.
17.Bercault, N, Boulain, T, Kuteifan, K et al. (2004) Obesity-related excess mortality rate in an adult intensive care unit: a risk-adjusted matched cohort study. Crit Care Med 32, 998–1003.
18.Olsen, MA, Nepple, JJ, Riew, KD et al. (2008) Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg Am 90, 6269.
19.Löfgren, M, Poromaa, IS, Stjerndahl, JH et al. (2004) Postoperative infections and antibiotic prophylaxis for hysterectomy in Sweden: a study by the Swedish National Register for Gynecologic Surgery. Acta Obstet Gynecol Scand 83, 12021207.
20.Cantürk, Z, Cantürk, NZ, Çetinarslan, B et al. (2003) Nosocomial infections and obesity in surgical patients. Obesity 11, 769775.
21.Dowsey, MM & Choong, PFM (2008) Obesity is a major risk factor for prosthetic infection after primary hip arthroplasty. Clin Orthop Relat Res 466, 153158.
22.Potapov, EV, Loebe, M, Anker, S et al. (2003) Impact of body mass index on outcome in patients after coronary artery bypass grafting with and without valve surgery. Eur Heart J 24, 19331941.
23.Newell, MA, Bard, MR, Goettler, CE et al. (2007) Body mass index and outcomes in critically injured blunt trauma patients: weighing the impact. J Am Coll Surg 204, 10561061.
24.Lillenfeld, DE, Vlahov, D, Tenney, JH et al. (1988) Obesity and diabetes as risk factors for postoperative wound infections after cardiac surgery. Am J Infect Control 16, 36.
25.Knight, RJ, Bodian, C, Rodriguez-Laiz, G et al. (2000) Risk factors for intra-abdominal infection after pancreas transplantation. Am J Surg 179, 99–102.
26.Davenport, DL, Xenos, ES, Hosokawa, P et al. (2009) The influence of body mass index obesity status on vascular surgery 30-day morbidity and mortality. J Vasc Surg 49, 140147.
27.Dowsey, MM & Choong, PFM (2009) Obese diabetic patients are at substantial risk for deep infection after primary TKA. Clin Orthop Relat Res 467, 15771581.
28.Swenne, C, Lindholm, C, Borowiec, J et al. (2004) Surgical-site infections within 60 days of coronary artery by-pass graft surgery. J Hosp Infect 57, 1424.
29.Mathison, CJ (2003) Skin and wound care challenges in the hospitalized morbidly obese patient. J Wound Ostomy Continence Nurs 30, 7883.
30.Hanley, MJ, Abernethy, DR & Greenblatt, DJ (2010) Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 49, 7187.
31.Jain, S & Chaves, SS (2011) Obesity and Influenza. Clin Infect Dis 53, 422424.
32.Hanslik, T, Boelle, PY & Flahault, A (2010) Preliminary estimation of risk factors for admission to intensive care units and for death in patients infected with A (H1N1) 2009 influenza virus, France, 2009–2010. PLoS Curr 2, RRN 1150.
33.Louie, JK, Acosta, M, Samuel, MC et al. (2011) A novel risk factor for a novel virus: obesity and 2009 pandemic influenza A (H1N1). Clin Infect Dis 52, 301312.
34.Santa-Olalla Peralta, P, Cortes-Garcia, M, Vicente-Herrero, M et al. (2010) Risk factors for disease severity among hospitalised patients with 2009 pandemic influenza A (H1N1) in Spain, April–December 2009. Euro Surveill 15, 19667.
35.Morgan, OW, Bramley, A, Fowlkes, A et al. (2010) Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A (H1N1) disease. PLoS One 5, e9694.
36.Díaz, E, Rodríguez, A, Martin-Loeches, I et al. (2011) Impact of obesity in patients infected with 2009 influenza A (H1N1). Chest 139, 382386.
37.Kwong, JC, Campitelli, MA & Rosella, LC (2011) Obesity and respiratory hospitalizations during influenza seasons in Ontario, Canada: a cohort study. Clin Infect Dis 53, 413421.
38.Mancuso, P (2010) Obesity and lung inflammation. J Appl Physiol 108, 722728.
39.Akiyama, N, Segawa, T, Ida, H et al. (2011) Bimodal effects of obesity ratio on disease duration of respiratory syncytial virus infection in children. Allergol Int 60, 305308.
40.Brandt, M, Harder, K, Walluscheck, KP et al. (2001) Severe obesity does not adversely affect perioperative mortality and morbidity in coronary artery bypass surgery. Eur J Cardiothorac Surg 19, 662666.
41.McClean, K, Kee, F, Young, I et al. (2008) Obesity and the lung: 1. Epidemiology. Thorax 63, 649654.
42.Weber, DJ, Rutala, WA, Samsa, GP et al. (1985) Obesity as a predictor of poor antibody response to hepatitis B plasma vaccine. JAMA 254, 31873189.
43.Weber, DJ, Rutala, WA, Samsa, GP et al. (1986) Impaired immunogenicity of hepatitis B vaccine in obese persons. N Engl J Med 314, 1393–1393.
44.Eliakim, A, Swindt, C, Zaldivar, F et al. (2006) Reduced tetanus antibody titers in overweight children. Autoimmunity 39, 137141.
45.Middleman, AB, Anding, R & Tung, C (2010) Effect of needle length when immunizing obese adolescents with Hepatitis B vaccine. Pediatrics 125, e508.
46.Herwaldt, LA, Cullen, JJ, French, P et al. (2004) Preoperative risk factors for nasal carriage of Staphylococcus aureus. Infect Control Hosp Epidemiol 25, 481484.
47.Perdichizzi, G, Bottari, M, Pallio, S et al. (1996) Gastric infection by Helicobacter pylori and antral gastritis in hyperglycermic obese and in diabetic subjects. New Microbiol 19, 149154.
48.Karjala, Z, Neal, D & Rohrer, J (2011) Association between HSV1 seropositivity and obesity: data from the National Health and Nutritional Examination Survey, 2007–2008. PLoS One 6, e19092.
49.Bearden, DT & Rodvold, KA (2000) Dosage adjustments for antibacterials in obese patients: applying clinical pharmacokinetics. Clin Pharmacokinet 38, 415426.
50.Bauer, L, Black, D & Lill, J (1998) Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol 54, 621625.
51.Stein, GE, Schooley, SL, Peloquin, CA et al. (2005) Pharmacokinetics and pharmacodynamics of linezolid in obese patients with cellulitis. Ann Pharmacother 39, 427.
52.Nishina, PM, Lowe, S, Wang, J et al. (1994) Characterization of plasma lipids in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow. Metab Clin Exp 43, 549553.
53.Pelleymounter, MA, Cullen, MJ, Baker, MB et al. (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540543.
54.La Cava, A & Matarese, G (2004) The weight of leptin in immunity. Nat Rev Immunol 4, 371379.
55.Mancuso, P, Gottschalk, A, Phare, SM et al. (2002) Leptin-deficient mice exhibit impaired host defense in Gram-negative pneumonia. J Immunol 168, 40184024.
56.Hsu, A, Aronoff, D, Phipps, J et al. (2007) Leptin improves pulmonary bacterial clearance and survival in ob/ob mice during pneumococcal pneumonia. Clin Exp immunol 150, 332339.
57.Wieland, CW, Florquin, S, Chan, ED et al. (2005) Pulmonary Mycobacterium tuberculosis infection in leptin-deficient ob/ob mice. Int Immunol 17, 13991408.
58.Ordway, D, Henao-Tamayo, M, Smith, E et al. (2008) Animal model of Mycobacterium abscessus lung infection. J Leukoc Biol 83, 15021511.
59.Park, S, Rich, J, Hanses, F et al. (2009) Defects in innate immunity predispose C57BL/6J-Leprdb/Leprdb mice to infection by Staphylococcus aureus. Infect Immun 77, 10081014.
60.Ikejima, S, Sasaki, S, Sashinami, H et al. (2005) Impairment of host resistance to Listeria monocytogenes infection in liver of db/db and ob/ob mice. Diabetes 54, 182189.
61.Plotkin, B, Paulson, D, Chelich, A et al. (1996) Immune responsiveness in a rat model for type II diabetes (Zucker rat, fa/fa): susceptibility to Candida albicans infection and leucocyte function. J Med Microbiol 44, 277283.
62.De Rosa, V, Procaccini, C, Calì, G et al. (2007) A key role of leptin in the control of regulatory T cell proliferation. Immunity 26, 241255.
63.Smith, AG, Sheridan, PA, Harp, JB et al. (2007) Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr 137, 12361243.
64.Karlsson, EA, Sheridan, PA & Beck, MA (2010) Diet-induced obesity impairs the T cell memory response to influenza virus infection. J Immunol 184, 31273133.
65.Smith, AG, Sheridan, PA, Tseng, RJ et al. (2009) Selective impairment in dendritic cell function and altered antigen-specific CD8T-cell responses in diet-induced obese mice infected with influenza virus. Immunology 126, 268279.
66.Shamshiev, AT, Ampenberger, F, Ernst, B et al. (2007) Dyslipidemia inhibits Toll-like receptor-induced activation of CD8α-negative dendritic cells and protective Th1 type immunity. J Exp Med 204, 441452.
67.Verwaerde, C, Delanoye, A, Macia, L et al. (2006) Influence of high-fat feeding on both naive and antigen-experienced T-cell immune response in DO10.11 Mice. Scand J Immunol 64, 457466.
68.Huszar, D, Lynch, CA, Fairchild-Huntress, V et al. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131141.
69.Kennedy, AJ, Ellacott, KLJ, King, VL et al. (2010) Mouse models of the metabolic syndrome. Dis Model Mech 3, 156166.
70.Warden, CH & Fisler, JS (2008) Comparisons of diets used in animal models of high fat feeding. Cell Metab 7, 277.
71.Thigpen, JE, Setchell, KDR, Saunders, H et al. (2004) Selecting the appropriate rodent diet for endocrine disruptor research and testing studies. ILAR J 45, 401416.
72.Lephart, ED, Porter, JP, Lund, TD et al. (2004) Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats. Nutr Metab 1, 16.
73.Lephart, ED, Setchell, KDR, Handa, RJ et al. (2004) Behavioral effects of endocrine-disrupting substances: phytoestrogens. ILAR J 45, 443454.
74.Torre-Villalvazo, I, Tovar, AR, Ramos-Barragán, VE et al. (2008) Soy protein ameliorates metabolic abnormalities in liver and adipose tissue of rats fed a high fat diet. J Nutr 138, 462468.
75.Bulló, M, García-Lorda, P, Megias, I et al. (2003) Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obesity 11, 525531.
76.Fantuzzi, G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115, 911919.
77.Tilg, H & Moschen, AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6, 772783.
78.Fenton, J, Nunez, N, Yakar, S et al. (2009) Diet-induced adiposity alters the serum profile of inflammation in C57BL/6N mice as measured by antibody array. Diabetes Obes Metab 11, 343354.
79.Koerner, A (2005) Adipocytokines: leptin – the classical, resistin – the controversical, adiponectin – the promising, and more to come. Best Pract Res Clin Endocrinol Metab 19, 525546.
80.Wolf, AM, Wolf, D, Rumpold, H et al. (2004) Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun 323, 630635.
81.Kim, K, Kim, JK, Han, SH et al. (2006) Adiponectin is a negative regulator of NK cell cytotoxicity. J Immunol 176, 59585964.
82.Ziegler-Heitbrock, H, Wedel, A, Schraut, W et al. (1994) Tolerance to lipopolysaccharide involves mobilization of nuclear factor kappa B with predominance of p50 homodimers. J Biol Chem 269, 1700117004.
83.Lord, GM, Matarese, G, Howard, JK et al. (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897900.
84.Zarkesh-Esfahani, H, Pockley, G, Metcalfe, RA et al. (2001) High-dose leptin activates human leukocytes via receptor expression on monocytes. J Immunol 167, 45934599.
85.Zhao, Y, Sun, R, You, L et al. (2003) Expression of leptin receptors and response to leptin stimulation of human natural killer cell lines. Biochem Biophys Res Commun 300, 247252.
86.Papathanassoglou, E, El-Haschimi, K, Li, XC et al. (2006) Leptin receptor expression and signaling in lymphocytes: kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J Immunol 176, 77457752.
87.Caldefie-Chezet, F, Poulin, A, Tridon, A et al. (2001) Leptin: a potential regulator of polymorphonuclear neutrophil bactericidal action? J Leukoc Biol 69, 414418.
88.Loffreda, S, Yang, S, Lin, H et al. (1998) Leptin regulates proinflammatory immune responses. FASEB J 12, 5765.
89.Gainsford, T, Willson, TA, Metcalf, D et al. (1996) Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc Natl Acad Sci USA 93, 1456414565.
90.Caldefie-Chezet, F, Poulin, A & Vasson, MP (2003) Leptin regulates functional capacities of polymorphonuclear neutrophils. Free Radical Res 37, 809814.
91.Montecucco, F, Bianchi, G, Gnerre, P et al. (2006) Induction of neutrophil chemotaxis by leptin. Ann N Y Acad Sci 1069, 463471.
92.Tian, Z, Sun, R, Wei, H et al. (2002) Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem Biophys Res Commun 298, 297302.
93.Howard, JK, Lord, GM, Matarese, G et al. (1999) Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J Clin Invest 104, 10511059.
94.Claycombe, K, King, LE & Fraker, PJ (2008) A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc Natl Acad Sci USA 105, 20172021.
95.Martín-Romero, C, Santos-Alvarez, J, Goberna, R et al. (2000) Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell Immunol 199, 1524.
96.MacIver, NJ, Jacobs, SR, Wieman, HL et al. (2008) Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol 84, 949957.
97.Matarese, G, Moschos, S & Mantzoros, CS (2005) Leptin in immunology. J Immunol 174, 31373142.
98.Nave, H, Mueller, G, Siegmund, B et al. (2008) Resistance of Janus kinase-2 dependent leptin signaling in natural killer (NK) cells: a novel mechanism of NK cell dysfunction in diet-induced obesity. Endocrinology 149, 33703378.
99.Bjørbæk, C, El-Haschimi, K, Frantz, JD et al. (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 274, 3005930065.
100.Bjørbæk, C, Elmquist, JK, Frantz, JD et al. (1998) Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1, 619625.
101.Sahu, A (2002) Resistance to the satiety action of leptin following chronic central leptin infusion is associated with the development of leptin resistance in neuropeptide Y neurones. J Neuroendocrinol 14, 796804.
102.Munzberg, H & Myers, MG (2005) Molecular and anatomical determinants of central leptin resistance. Nat Neurosci 8, 566570.
103.Miyara, M & Sakaguchi, S (2007) Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 13, 108116.
104.Deiuliis, J, Shah, Z, Shah, N et al. (2011) Visceral adipose inflammation in obesity is associated with critical alterations in T-regulatory cell numbers. PLoS One 6, e16376.
105.Winer, S, Chan, Y, Paltser, G et al. (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15, 921929.
106.Ilan, Y, Maron, R, Tukpah, AM et al. (2010) Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci USA 107, 97659770.
107.Defronzo, RA, Soman, V, Sherwin, RS et al. (1978) Insulin binding to monocytes and insulin action in human obesity, starvation, and refeeding. J Clin Invest 62, 204213.
108.Robert, A, Grunberger, G, Carpenteier, JL et al. (1984) The insulin receptor of a human monocyte-like cell line: characterization and function. Endocrinology 114, 247253.
109.Trischitta, V, Brunetti, A, Chiavetta, A et al. (1989) Defects in insulin-receptor internalization and processing in monocytes of obese subjects and obese NIDDM patients. Diabetes 38, 15791584.
110.Liang, CP, Han, S, Okamoto, H et al. (2004) Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 113, 764773.
111.Stentz, FB & Kitabchi, AE (2003) Activated T lymphocytes in type 2 diabetes: implications from in vitro studies. Curr Drug Targets 4, 493503.
112.Viardot, A, Grey, ST, Mackay, F et al. (2007) Potential antiinflammatory role of insulin via the preferential polarization of effector T cells toward a T helper 2 phenotype. Endocrinology 148, 346353.
113.Helderman, J (1981) Role of insulin in the intermediary metabolism of the activated thymic-derived lymphocyte. J Clin Invest 67, 16361642.
114.Delacre, M, Pot, B & Grangette, C (2008) Feeding our immune system: impact on metabolism. Clin Dev Immunol 2008, 639803.
115.Frauwirth, KA & Thompson, CB (2004) Regulation of T lymphocyte metabolism. J Immunol 172, 46614665.
116.Newsholme, P, Rosa, L, Newsholme, E et al. (1996) The importance of fuel metabolism to macrophage function. Cell Biochem Funct 14, 110.
117.Calder, PC (1995) Fuel utilization by cells of the immune system. Proc Nutr Soc 54, 6582.
118.Fu, Y, Maianu, L, Melbert, BR et al. (2004) Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Blood Cells Mol Dis 32, 182190.
119.Stentz, FB & Kitabchi, AE (2005) Hyperglycemia-induced activation of human T-lymphocytes with de novo emergence of insulin receptors and generation of reactive oxygen species. Biochem Biophys Res Commun 335, 491495.
120.Jacobs, SR, Herman, CE, MacIver, NJ et al. (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180, 44764486.
121.Bergman, RN & Ader, M (2000) Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab 11, 351356.
122.Lee, JY, Sohn, KH, Rhee, SH et al. (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 276, 1668316689.
123.Lee, JY, Ye, J, Gao, Z et al. (2003) Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem 278, 3704137051.
124.Lee, JY, Plakidas, A, Lee, WH et al. (2003) Differential modulation of Toll-like receptors by fatty acids. J Lipid Res 44, 479486.
125.Lee, JY, Zhao, L, Youn, HS et al. (2004) Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem 279, 1697116979.
126.Weatherill, AR, Lee, JY, Zhao, L et al. (2005) Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J Immunol 174, 53905397.
127.Kawai, T & Akira, S (2006) TLR signaling. Cell Death Differ 13, 816825.
128.Shi, H, Kokoeva, MV, Inouye, K et al. (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116, 30153025.
129.Nguyen, M, Favelyukis, S, Nguyen, AK et al. (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282, 3527935292.
130.Suganami, T, Tanimoto-Koyama, K, Nishida, J et al. (2007) Role of the Toll-like receptor 4/NF-κB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 27, 8491.
131.Laine, PS, Schwartz, EA, Wang, Y et al. (2007) Palmitic acid induces IP-10 expression in human macrophages via NF-κB activation. Biochem Biophys Res Commun 358, 150155.
132.Stentz, FB & Kitabchi, AE (2006) Palmitic acid-induced activation of human T-lymphocytes and aortic endothelial cells with production of insulin receptors, reactive oxygen species, cytokines, and lipid peroxidation. Biochem Biophys Res Commun 346, 721726.
133.Michalek, RD, Gerriets, VA, Jacobs, SR et al. (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4T cell subsets. J Immunol 186, 3299.
134.Pearce, EL, Walsh, MC, Cejas, PJ et al. (2009) Enhancing CD8T-cell memory by modulating fatty acid metabolism. Nature 460, 103107.
135.Araki, K, Turner, AP, Shaffer, VO et al. (2009) mTOR regulates memory CD8T-cell differentiation. Nature 460, 108112.
136.Rao, RR, Li, Q, Odunsi, K et al. (2010) The mTOR kinase determines effector versus memory CD8T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32, 6778.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed