Skip to main content
×
×
Home

Intake of fruit and vegetables: implications for bone health

  • Susan A. New (a1)
Abstract

These famous words by Mencken in the early 20th century about the meaning of life and death, may also apply to the struggle of the healthy skeleton against the deleterious effects of retained acid!’ ( Kraut & Coburn, 1994). The health-related benefit of a high consumption of fruit and vegetables and the influence of this food group on a variety of diseases has been gaining increasing prominence in the literature over a number of years. Of considerable interest to the osteoporosis field is the role that bone plays in acid–base balance. Natural, pathological and experimental states of acid loading and acidosis have been associated with hypercalciuria and negative Ca balance, and more recently the detrimental effects of ‘acid’ from the diet on bone mineral have been demonstrated. Suprisingly, consideration of the skeleton as a source of ‘buffer’ contributing to both the preservation of the body's pH and defence of the system against acid–base disorders has been ongoing for over three decades. However, it is only more recently that the possibility of a positive link between a high consumption of fruit and vegetables and indices of bone health has been more fully explored. A number of population-based studies published in the last decade have demonstrated a beneficial effect of fruit and vegetable and K intake on axial and peripheral bone mass and bone metabolism in men and women across the age-ranges. Further support for a positive link between fruit and vegetable intake and bone health can be found in the results of the Dietary Approaches to Stopping Hypertension (DASH) and DASH-Sodium intervention trials. There is now an urgent requirement for the implementation of: (1) fruit and vegetable and alkali administration–bone health intervention trials, including fracture risk as an end point; (2) reanalysis of existing dietary–bone mass and metabolism datasets to look specifically at the impact of dietary ‘acidity’ on the skeleton.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Intake of fruit and vegetables: implications for bone health
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Intake of fruit and vegetables: implications for bone health
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Intake of fruit and vegetables: implications for bone health
      Available formats
      ×
Copyright
Corresponding author
Corresponding author: Dr Susan New,fax +44 1483 576978, S.new@surrey.ac.uk
References
Hide All
Albright, F, Reifenstein, EC Jr (1948) The Parathyroid Glands and Metabolic Bone Disease, pp. 241247. Baltimore, MD: Williams and Wilkins.
Appel, LJ, Moore, TJ, Obarzanek, E, Vallmer, WM, Svetkey, LP, Sacks, FM, Bray, GA, Vogt, TM & Cutler, JA (1997) A clinical trial of the effects of dietary patterns on blood pressure. New England Journal of Medicine 336, 11171124.
Arnett, TR, Boyde, A, Jones, SL & Taylor, ML (1994) Effects of medium acidification by alteration of carbon dioxide or bicarbonate concentrations on the resorptive activity of rat osteoclasts. Journal of Bone and Mineral Research 9, 375379.
Arnett, TR & Dempster, DW (1986) Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology 119, 119124.
Arnett, TR & Dempster, DW (1990) Perspectives: protons andosteoclasts. Journal of Bone and Mineral Research 5, 10991103.
Arnett, TR & Spowage, M (1996) Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone 18, 277279.
Barzel, US (1969) The effect of excessive acid feeding on bone. Calcified Tissue Research 4, 94100.
Barzel, US (1970) The role of bone in acid-base metabolism. In Osteoporosis, pp. 199206. New York: Grune & Stration.
Barzel, US (1997) Dietary patterns and blood pressure (letter). New England Journal of Medicine 337 637
Barzel, US & Jowsey, J (1969) The effects of chronic acid and alkali administration on bone turnover in adult rats. Clinical Science 36, 517524.
Barzel, US & Massey, LK (1998) Excess dietary protein can adversely affect bone. Journal of Nutrition 128, 10511053.
Bernstein, DS, Wachman, A & Hattner, RS (1970) Acid-base balance in metabolic bone disease. In Osteoporosis, 207216 [Barzel, US, editors]. New York: Grune & Stratton.
Buclin, T, Cosma, M, Appenzeller, M, Jacquet, AF, Decosterd, La, Biollaz, J & Burckhardt, P (2001) Diet acids and alkalis influence Calcium Retention In Bone. Osteoporosis International 12, 493499.
Burckhardt, P (2003) In Nutritional Aspects of Bone Health, pp. 313321 [New, SA, Bonjour, J-P, editors]. Cambridge: Royal Society of Chemistry (in The Press).
Bushinsky, Da (1996) Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. American Journal of Physiology 271, F216F222.
Bushinsky, Da (1997) Decreased potassium stimulates bone resorption. American Journal of Physiology 272, F774F780.
Bushinsky Da, , Gavrilov, K, Chabala, JM & Levi-Setti, R (1997) Metabolic acidosis decreases potassium content of bone. Journal of the American Society of Nephrology 7, 1787.
Bushinsky, DA, Kreiger, NS, Geisser, DI, Grossman, EB & Coe, FL (1983) Effects of bone calcium and proton fluxes in vitro. American Journal of Physiology 245, F204F209.
Bushinsky, Da, Lam, BC, Nespeca, R, Sessler, NE & Grynpas, MD (1993) Decreased bone carbonate content in response to metabolic, but not respiratory, acidosis. American Journal of Physiology 265, F530F536.
Bushinsky, Da & Sessler, Ne (1992) Critical role of bicarbonate in calcium release from bone. American Journal of Physiology 263, F510F515.
Bushinsky, Da, Sessler, Ne, Glena, RE & Featherstone, JDB (1994) Proton-induced physicochemical calcium release from ceramic apatite disks. Journal of Bone and Mineral Research 9, 213220.
Chen, Y, Ho, SC, Lee, R, Lam, S & Woo, J (2001) Fruit intake is associated with better bone mass among Hong Kong Chinese early postmenopausal women. Journal of Bone and Mineral Research 16, Suppl. 1, S386.
Dawson-Hughes, B & Harris, SS (2002) Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. American Journal of Clinical Nutrition 75, 773779.
Department Health (1998) Nutrition and Bone Health: With Particular Reference to Calcium and Vitamin D. Report on Health and Social Subjects no. 49 London: H.M. Stationery Office.
Eaton, BS & Konner, M (1985) Paleolithic nutrition. A consideration of its nature and current implications. New England Journal of Medicine 312, 283290.
Eaton-Evans, J, McIlrath, EM, Jackson, WE, Bradley, P & Strain, JJ (1993) Dietary factors and vertebral bone density in perimenopausal women from a general medical practice in Northern Ireland. Proceedings of the Nutrition Society 52, 44A.
Fox, D (2001) Hard cheese. New Scientist 15, December issue 4245.
Frassetto, La, Morris, RC Jr & Sebastian, A (1996) Effect of age on blood acid-base composition in adult humans: role of age-related renal functional decline. American Journal of Physiology 271, F1114F1122.
Frassetto, La & Sebastian, A (1996) Age and systemic acid-base equilibrium: analysis of published data. Journal of Gerontology 51A, B91B99.
Frassetto, L, Todd, K, Morris, RC & Sebastian, A (1998) Estimation of net endogenous noncarbonic acid production in humans from dietary protein and potassium contents. American Journal of Clinical Nutrition 68, 576583.
Gastineau, CF, Power, MH & Rosevear, JW (1960) Metabolic studies of a patient with osteoporosis and diabetes mellitus: effects of testosterone enanthate and strontium lactate. Proceedings of the Mayo Clinic 35, 105111.
Goto, K (1918) Mineral metabolism in experimental acidosis. Journal of Biological Chemistry 36, 355376.
Green, J & Kleeman, R (1991) Role of bone in regulation of systematic acid-base balance (editorial review). Kidney International 39, 926.
Gregory, J, Foster, K, Tyler, H & Wiseman, M (1990) The Dietary and Nutritional Survey of British Adults. London: H.M. Stationery Office.
Hammond, RH & Storey, E (1970) Measurement of growth and resorption of bone in rats fed meat diet. Calcified Tissue Research 4, 291.
Heaney, RP (1998) Excess dietary protein may not adversely affect bone. Journal of Nutrition 128, 10541057.
Heaney, RP (2002) Protein and calcium: antagonists or synergists. American Journal of Clinical Nutrition 75, 609.
Irving, L & Chute, AL (1933) The participation of the carbonates of bone in the neutralisation of ingested acid. Journal of Cellular Physiology 2, 157.
Jones, G, Riley, MD & Whiting, S (2001) Association between urinary potassium, urinary sodium, current diet, and bone density in prepubertal children. American Journal of Clinical Nutrition 73, 839844.
Kearney, J & Gibney, M (1998) A pan-European survey of consumer attitudes to food, nutrition and health overview. Food Quality and Preference 9, 467478.
Kraut, Ja & Coburn, JW (1994) Bone, acid and osteoporosis. New England Journal of Medicine 330, 18211822.
Kreiger, Na, Sessler, Ne & Bushinsky, Da (1992) Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. American Journal of Physiology 262, F442F448.
Kurtz, I, Maher, T, Hulter, HN, Schambelan, M & Sebastian, A (1983) Effect of diet on plasma acid-base composition in normal humans. Kidney International 24, 670680.
Lemann, J Jr, Adams, ND & Gray, RW (1979) Urinary calcium excretion in humans. New England Journal of Medicine 301, 535541.
Lemann, J Jr, Gray, RW, Maierhofer, WJ & Cheung, HS (1986) The importance of renal net acid excretion as a determinant of fasting urinary calcium excretion. Kidney International 29, 743746.
Lemann, J, Gray, RW & Pleuss, JA (1989) Potassium bicarbonate, but not sodium bicarbonate, reduces urinary calcium excretion and improves calcium balance in healthy men. Kidney International 35, 688695.
Lemann, J Jr, Litzow, JR & Lennon, EJ (1966) The effects of chronic acid load in normal man: Further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. Journal of Clinical Investigation 45, 16081614.
Lemann, J, Litzow, JR & Lennon, EJ (1967) Studies of the mechanisms by which chronic metabolic acidosis augments urinary calcium excretion in man. Journal of Clinical Investigation 46, 13181328.
Lemann, J Jr, Pleuss, JA, Gray, RW & Hoffmann, RG (1991) Potassium administration increases and potassium deprivation reduces urinary calcium excretion in healthy adults. Kidney International 39, 973983.
Lin, P, Ginty, F, Appel, L, Svetky, L, Bohannon, A, Barclay, D, Gannon, R & Aickin, M (2001) Impact of sodium intake and dietary patterns on biochemical markers of bone and calcium metabolism. Journal of Bone and Mineral Research 16, Suppl. 1, S511.
Macdonald, HM, New, SA, Fraser, WD, Black, AJ, Grubb Da, & Reid, DM (2002) Increased fruit and vegetable intake reduces bone turnover in early postmenopausal Scottish women. Osteoporosis International.
Macdonald, HM, Downie, FH, Moore, F, New, SA, Grubb Da, , Reid, DM (2001) Higher intakes of fruit and vegetables are associated with higher bone mass in perimenopausal Scottish women. Proceedings of the Nutrition Society 60, 202A.
Macdonald, HM, New, SA, McGuigan, Fe, Golden, MHN, Ralston, SH, Grubb, Da & Reid, DM (2000) Femoral neck bone loss and dietary Ca intake in peri and early post-menopausal women: an association dependent on VDR genotype. Journal of Bone and Mineral Research 15, S202.
Macdonald, HM, New, SA, McGuigan, FE, Goldenm, HN, Ralston, SH, Grubb, DA, Reid, DM, (2001 c) Modest alcohol intake reduces bone loss in peri and early postmenopausal Scottish women: an effect dependent on estrogen receptor genotype?. Bone 28, S95.
Mazess, RB & Mather, WE (1974) Bone mineral content of NorthAlaskan Eskimos. American Journal of Clinical Nutrition 27, 916925.
Mazess, RB & Mather, WE (1975 a) Bone mineral content in Canadian Eskimos. Human Biology 47, 45.
Mazess, RB & Mather, WE (1975b) Bone mineral content of North Alaskan Eskimos (letter). American Journal of Clinical Nutrition 28, 567.
Meghji, S, Morrison, MS, Henderson, B & Arnett, TR (2001) PH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. American Journal of Physiology 280, E112E119.
Michaelsson, K, Holmberg, L, Maumin, H, Wolk, A, Bergstrom, R & Ljunghall, S (1995) Diet, bone mass and osteocalcin; a crosssectional study. Calcified Tissue International 57, 8693.
Miller, DR, Krall, EA, Anderson, JJ, Rich, SE, Rourke, A & Chan, J (2001) Dietary mineral intake and low bone mass in men: The VALOR Study. Journal of Bone and Mineral Research 16, Suppl.1, S395.
Ministry Agriculture Fisheries Food (1995) Manual of Nutrition, 10th ed. London: H.M. Stationery Office.
Morris, RC (2001) Acid-base, sodium and potassium as determinants of bone and calcium economy. In Nutritional Aspects of Osteoporosis, pp. 357378 [Burckhardt, P, DawsonHughes, B, Heaney, RP,editors]. San Diego, CA: Academic Press.
Muhlbauer, RC, Felix, R, Lozano, A, Palacio, S & Reinli, A (2003) Common herbs, essential oils and monoterpenes Potently modulate bone metabolism. Bone (In the press).
Muhlbauer, RC, Lozano, AM & Reinli, A (2002) Onion and a mixture of vegetables, salads and herbs affect bone resorption in the rat by a mechanism independent of their base excess. Journal of Bone and Mineral Research 17, 12301236.
New, Sa(1999) Bone health: the role of micronutrients. British Medical Bulletin 55, 619633.
New, Sa (2000) Nutrition, exercise and bone health. Proceedings of the Nutrition Society 60, 265274.
New, Sa (2002) The role of the skeleton in acid-base homeostasis. Proceedings of the Nutrition Society 61, 151164.
New, Sa, Bolton-Smith, C, Grubb, Da & Reid, DM (1997) Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. American Journal of Clinical Nutrition 65, 18311839.
New, Sa & Francis, RF (2003) Book review. Science in Parliament (In the Press).
New, Sa, Macdonald, HM, Grubb, DA & Reid, DM (2001) Positive association between net endogenous non-carbonic acid production (NEAP) and bone health: further support for the importance of the skeleton to acid-base balance. Bone 28, Suppl., S94.
New, Sa, Macdonald, HM, Dixon, ASJ & Reid, DM (2002 a) Hard cheese but not so soft veg (letter). New Scientist 2330, 5455.
New, SA & Millward, DJ (2003) Calcium, protein and fruit and vegetables as dietary determinants of bone health (letter). American Journal of Clinical Nutrition 77, 13401341.
New, Sa, Robins, SP, Campbell, MK, Martin, JC, Garton, MJ, Bolton-Smith, C, Grubb, DA, Lee, SJ & Reid, DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health. American Journal of Clinical Nutrition 71, 142151.
New, Sa, Smith, R, Brown, JC, Reid, DM, (2002 b) Positive associations between fruit and vegetable consumption and bone mineral density in late postmenopausal and elderly women. Osteoporosis International 13, 577.
Oh, MS & Uribarri, J (1996) Bone buffering of acid: fact or fancy. Journal of Nephrology 9, 261262.
Patterson, BH, Block, G & Rosenberger, WF (1990) Fruit and vegetables in the American diet: data from the NHANES II Survey. American Journal of Public Health 80, 14431449.
Plant, J & Tidey, G (2003) Understanding, Preventing and Overcoming Osteoporosis. London: Virgin Books Ltd.
Reidenberg, MM, Haag, BL, Channick, BJ, Schuman, CR & Wilson, TGG (1966) The response of bone to metabolic acidosis in man. Metabolism 15, 236241.
Remer, T & Manz, F (1995) Potential renal acid load of foods and its influence on urine pH. Journal of the American Dietetic Association 95, 791797.
Sebastian, A, Harris, ST, Ottaway, JH, Todd, KM & Morris, RC (1994) Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. New England Journal of Medicine 330, 17761781.
Stone, KL, Blackwell, T, Orwoll, ES, Cauley, JC, Barrett-Connor, E, Marcus, R, Nevitt, MC & Cummings, SR (2001) The relationship between diet and bone mineral density in older men. Journal of Bone and Mineral Research 16, Suppl. 1, S388.
Tucker, KL, Hannan, MT, Chen, H, Cupples, A, Wilson, PWF & Kiel, DP (1999) Potassium and fruit and vegetables are asso ciated with greater bone mineral density in elderly men and women. American Journal of Clinical Nutrition 69, 727736.
Wachman, A & Bernstein, DS (1968) Diet and osteoporosis. Lancet i, 958959.
Widdowson, EM, McCance, Ra & Spray, CM (1951) The chemical composition of the human body. Clinical Science 10, 113125.
Wood, RJ (1994) Potassium bicarbonate supplementation and calcium metabolism in postmenopausal women: are we barking up the wrong tree. Nutrition Reviews 52, 278280.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed