Skip to main content Accesibility Help
×
×
Home

Negotiating the complexities of exocrine and endocrine dysfunction in chronic pancreatitis

  • Sinead N. Duggan (a1)
Abstract

Chronic pancreatitis is a chronic inflammatory disease of the pancreas characterised by irreversible morphological change and typically causing pain and/or permanent loss of function. This progressive, irreversible disease results in destruction of healthy pancreatic tissue and the development of fibrous scar tissue. Gradual loss of exocrine and endocrine function follows, along with clinical manifestations such as steatorrhoea, abdominal pain and diabetes. Nutrition in chronic pancreatitis has been described as a problem area and, until recently, there was little research on the topic. It is often asserted that >90 % of the pancreas must be damaged before exocrine insufficiency occurs; however, an exploration of the original studies from the 1970s found that the data do not support this assertion. The management of steatorrhoea with pancreatic enzyme replacement therapy is the mainstay of nutritional management, and early identification and treatment is a key. The presence of steatorrhoea, coupled with poor dietary intake (due to intractable abdominal pain, gastrointestinal side effects and often alcoholism) renders the chronic pancreatitis patients at considerable risk for undernutrition, muscle depletion and fat-soluble vitamin deficiency. Premature osteoporosis/osteopenia afflicts two-thirds of patients as a consequence of poor dietary intake of calcium and vitamin D, low physical activity, low sunlight exposure, heavy smoking, as well as chronic low-grade inflammation. Bone metabolism studies show increased bone formation as well as bone resorption in chronic pancreatitis, indicating that bone turnover is abnormally high. Loss of the pancreatic islet cells occurs later in the disease process as the endocrine cells are diffusely distributed throughout the pancreatic parenchyma. Patients may develop type 3c (pancreatogenic) diabetes, which is complicated by concurrent decreased glucagon secretion, and hence an increased risk of hypoglycaemia. Diabetes control is further complicated by poor diet, malabsorption and (for some) alcoholism, and therefore those with type 3c diabetes have clinical characteristics and therapeutic goals that are different from that of type 1 and type 2 diabetes patients. This review describes emerging research and clinical guidelines for nutrition in chronic pancreatitis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Negotiating the complexities of exocrine and endocrine dysfunction in chronic pancreatitis
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Negotiating the complexities of exocrine and endocrine dysfunction in chronic pancreatitis
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Negotiating the complexities of exocrine and endocrine dysfunction in chronic pancreatitis
      Available formats
      ×
Copyright
Corresponding author
Corresponding author: Dr S. Duggan, email duggansi@tcd.ie
References
Hide All
1. Lankisch, PG (2007) Chronic pancreatitis. Curr Opin Gastroenterol 23, 502507.
2. Frulloni, L, Falconi, M, Gabbrielli, A et al. (2010) Italian consensus guidelines for chronic pancreatitis. Dig Liver Dis 42, Suppl. 6, S381S406.
3. Conwell, DL, Lee, LS, Yadav, D et al. (2014) American pancreatic association practice guidelines in chronic pancreatitis: evidence-based report on diagnostic guidelines. Pancreas 43, 11431162.
4. Working Party of the Australasian Pancreatic Club, Smith, RC, Smith, SF et al. (2016) Summary and recommendations from the Australasian guidelines for the management of pancreatic exocrine insufficiency. Pancreatology 16, 164180.
5. de-Madaria, E, Abad-González, A, Aparicio, JR et al. (2013) The Spanish Pancreatic Club's recommendations for the diagnosis and treatment of chronic pancreatitis: part 2 (treatment). Pancreatology 13, 1828.
6. Hoffmeister, A, Mayerle, J, Beglinger, C et al. (2015) English language version of the S3-consensus guidelines on chronic pancreatitis: definition, aetiology, diagnostic examinations, medical, endoscopic and surgical management of chronic pancreatitis. Z Gastroenterol 53, 14471495.
7. Spanier, BWM, Dijkgraaf, MGW & Bruno, MJ (2008) Epidemiology, aetiology and outcome of acute and chronic pancreatitis: an update. Best Pract Res Clin Gastroenterol 22, 4563.
8. Midha, S, Singh, N, Sachdev, V et al. (2008) Cause and effect relationship of malnutrition with idiopathic chronic pancreatitis: prospective case-control study. J Gastroenterol Hepatol 23, 13781383.
9. Imoto, M & DiMagno, EP (2000) Cigarette smoking increases the risk of pancreatic calcification in late-onset but not early-onset idiopathic chronic pancreatitis. Pancreas 21, 115119.
10. Lin, Y, Tamakoshi, A, Hayakawa, T et al. (2000) Cigarette smoking as a risk factor for chronic pancreatitis: a case-control study in Japan. Research committee on intractable pancreatic diseases. Pancreas 21, 109114.
11. Pitchumoni, CS (2000) Does cigarette smoking cause chronic pancreatitis? J Clin Gastroenterol 31, 274275.
12. Ní Chonchubhair, HM, Bashir, Y, McNaughton, D et al. (2017) Hospital discharges and patient activity associated with chronic pancreatitis in Ireland 2009–2013. Pancreatology 17, 5662.
13. Díte, P, Starý, K, Novotný, I et al. (2001) Incidence of chronic pancreatitis in the Czech Republic. Eur J Gastroenterol Hepatol 13, 749750.
14. de la Iglesia-García, D, Huang, W, Szatmary, P et al. (2016) Efficacy of pancreatic enzyme replacement therapy in chronic pancreatitis: systematic review and meta-analysis. Gut [Epublication ahead of print version].
15. Thorat, V, Reddy, N, Bhatia, S et al. (2012) Randomised clinical trial: the efficacy and safety of pancreatin enteric-coated minimicrospheres (Creon 40000 MMS) in patients with pancreatic exocrine insufficiency due to chronic pancreatitis–a double-blind, placebo-controlled study. Aliment Pharmacol Ther 36, 426436.
16. Whitcomb, DC, Lehman, GA, Vasileva, G et al. (2010) Pancrelipase delayed-release capsules (CREON) for exocrine pancreatic insufficiency due to chronic pancreatitis or pancreatic surgery: a double-blind randomized trial. Am J Gastroenterol 105, 22762286.
17. DiMagno, EP, Go, VL & Summerskill, WH (1973) Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency. N Engl J Med 288, 813815.
18. Duggan, SN, Ní Chonchubhair, HM, Lawal, O et al. (2016) Chronic pancreatitis: a diagnostic dilemma. World J Gastroenterol 22, 23042313.
19. Lankisch, PG, Lembcke, B, Wemken, G et al. (1986) Functional reserve capacity of the exocrine pancreas. Digestion 35, 175181.
20. Sikkens, ECM, Cahen, DL, van Eijck, C et al. (2012) Patients with exocrine insufficiency due to chronic pancreatitis are undertreated: a Dutch national survey. Pancreatology 12, 7173.
21. Imrie, CW, Connett, G, Hall, RI et al. (2010) Review article: enzyme supplementation in cystic fibrosis, chronic pancreatitis, pancreatic and periampullary cancer. Aliment Pharmacol Ther 32, 125.
22. Capurso, G, Signoretti, M, Archibugi, L et al. (2016) Systematic review and meta-analysis: small intestinal bacterial overgrowth in chronic pancreatitis. United Eur Gastroenterol J 4, 697705.
23. Ni Chonchubhair, HM, Dobson, M, Ryan, B et al. (2017) Small intestinal bacterial overgrowth in chronic pancreatitis patients with pancreatic exocrine insufficiency; a prospective cohort study. Ir J Med Sci 186, s41s118.
24. Verdu, EF, Galipeau, HJ & Jabri, B (2015) Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat Rev Gastroenterol Hepatol 12, 497506.
25. Distrutti, E, Monaldi, L, Ricci, P et al. (2016) Gut microbiota role in irritable bowel syndrome: new therapeutic strategies. World J Gastroenterol 22, 22192241.
26. Sheehan, D, Moran, C & Shanahan, F (2015) The microbiota in inflammatory bowel disease. J Gastroenterol 50, 495507.
27. Farrell, JJ, Zhang, L, Zhou, H et al. (2012) Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 61, 582588.
28. Jesnowski, R, Isaksson, B, Möhrckea, C et al. (2010) Helicobacter pylori in autoimmune pancreatitis and pancreatic carcinoma. Pancreatology 10, 462466.
29. Savitskaya, K, Melnikova, Y, Vorobyev, A et al. (2002) Evaluation of the colonic content microenvironment in patients with chronic pancreatitis. Vestnik-rossiiskala Acad meditskikn Nauk 4, 2023.
30. Gorovits, E, Tokareva, E, Khlynova, O et al. (2012) Complex evaluation of intestine microbiocenosis condition in patients with chronic pancreatitis. Zhurnal Mikrobiol Epidemiol i Immunobiol 4, 7376.
31. Manasa, JS, Harish, V, Madhulika, A et al. (2015) Study of gut microbiome in chronic pancreatitis. Clin Gastroenterol Hepatol 13, e101.
32. Sikkens, ECM, Cahen, DL, Koch, AD et al. (2013) The prevalence of fat-soluble vitamin deficiencies and a decreased bone mass in patients with chronic pancreatitis. Pancreatology 13, 238242.
33. Nakamura, T, Takebe, K, Imamura, K et al. Fat-soluble vitamins in patients with chronic pancreatitis (pancreatic insufficiency). Acta Gastroenterol Belg 59, 1014.
34. Duggan, SN, Smyth, ND, O'Sullivan, M et al. (2014) The prevalence of malnutrition and fat-soluble vitamin deficiencies in chronic pancreatitis. Nutr Clin Pract 29, 348354.
35. Marotta, F, Labadarios, D, Frazer, L et al. (1994) Fat-soluble vitamin concentration in chronic alcohol-induced pancreatitis. Relationship with steatorrhea. Dig Dis Sci 39, 993998.
36. Jaganath, VA, Fedorowicz, Z, Thoher, V et al. (2011) Vitamin K supplementation for cystic fibrosis. Cochrane database Syst Rev CD008482.
37. Dujsikova, H, Dite, P, Tomandl, J et al. (2008) Occurrence of metabolic osteopathy in patients with chronic pancreatitis. Pancreatology 8, 583586.
38. Girish, BN, Rajesh, G, Vaidyanathan, K et al. (2009) Zinc status in chronic pancreatitis and its relationship with exocrine and endocrine insufficiency. JOP 10, 651656.
39. Glasbrenner, B, Malfertheiner, P, Büchler, M et al. (1991) Vitamin B12 and folic acid deficiency in chronic pancreatitis: a relevant disorder? Klin Wochenschr 69, 168172.
40. Papazachariou, IM, Martinez-Isla, A, Efthimiou, E et al. (2000) Magnesium deficiency in patients with chronic pancreatitis identified by an intravenous loading test. Clin Chim Acta 302, 145154.
41. Yokota, T, Tsuchiya, K, Furukawa, T et al. (1990) Vitamin E deficiency in acquired fat malabsorption. J Neurol 237, 103106.
42. Reynaert, H, Debeuckelaere, S, De Waele, B et al. (1993) The brown bowel syndrome and gastrointestinal adenocarcinoma. Two complications of vitamin E deficiency in celiac sprue and chronic pancreatitis? J Clin Gastroenterol 16, 4851.
43. Benítez Cruz, S, Gómez Candela, C, Ruiz Martín, M et al. Bilateral corneal ulceration as a result of caloric-protein malnutrition and vitamin A deficit in a patient with chronic alcoholism, chronic pancreatitis and cholecystostomy. Nutr Hosp 20, 308310.
44. Ruiz-Martín, MM, Boto-de-los-Bueis, A & Romero-Martín, R (2005) Severe bilateral ocular affection caused by vitamin A deficiency. Arch Soc Esp Oftalmol 80, 663666.
45. Kurtulmus, N, Yarman, S, Tanakol, R et al. (2005) Severe osteomalacia in a patient with idiopathic chronic pancreatitis. Scott Med J 50, 172173.
46. Kaur, N, Gupta, S & Minocha, VR (1996) Chronic calcific pancreatitis associated with osteomalacia and secondary hyperparathyroidism. Indian J Gastroenterol 15, 147148.
47. Bang, UC, Matzen, P, Benfield, T et al. (2011) Oral cholecalciferol versus ultraviolet radiation b: effect on vitamin d metabolites in patients with chronic pancreatitis and fat malabsorption – a randomized clinical trial. Pancreatology 11, 376382.
48. Reddy, SVB, Ramesh, V & Bhatia, E (2013) Double blind randomized control study of intramuscular vitamin D3 supplementation in tropical calcific pancreatitis. Calcif Tissue Int 93, 4854.
49. Duggan, S, O'Sullivan, M, Feehan, S et al. (2010) Nutrition treatment of deficiency and malnutrition in chronic pancreatitis: a review. Nutr Clin Pract 25, 362370.
50. Duggan, SN & Conlon, KC (2013) A practical guide to the nutritional management of chronic pancreatitis. Pract Gastroenterol 118, 2432.
51. Rasch, S, Valantiene, I, Mickevicius, A et al. (2016) Chronic pancreatitis: do serum biomarkers provide an association with an inflammageing phenotype? Pancreatology 16, 708714.
52. Regunath, H, Shivakumar, BM, Kurien, A et al. (2011) Anthropometric measurements of nutritional status in chronic pancreatitis in India: comparison of tropical and alcoholic pancreatitis. Indian J Gastroenterol 30, 7883.
53. Vaona, B, Armellini, F, Bovo, P et al. (1997) Food intake of patients with chronic pancreatitis after onset of the disease. Am J Clin Nutr 65, 851854.
54. O'Connor, DB, Kok, T, Christina, P et al. (2014). Investigating the prevalence of sarcopenia in chronic pancreatitis in an Irish cohort: a CT scan-based pilot study. Pancreatology 14, s74.
55. Shintakuya, R, Uemura, K, Murakami, Y et al. (2017) Sarcopenia is closely associated with pancreatic exocrine insufficiency in patients with pancreatic disease. Pancreatology 17, 7075.
56. Morán, CE, Sosa, EG, Martinez, SM et al. (1997) Bone mineral density in patients with pancreatic insufficiency and steatorrhea. Am J Gastroenterol 92, 867871.
57. Duggan, SN, O'Sullivan, M, Hamilton, S et al. (2012) Patients with chronic pancreatitis are at increased risk for osteoporosis. Pancreas 41, 11191124.
58. Sudeep, K, Chacko, A, Thomas, N et al. (2011) Predictors of osteodystrophy in patients with chronic nonalcoholic pancreatitis with or without diabetes. Endocr Pract 17, 897905.
59. Mann, STW, Stracke, H, Lange, U et al. (2003) Vitamin D3 in patients with various grades of chronic pancreatitis, according to morphological and functional criteria of the pancreas. Dig Dis Sci 48, 533538.
60. Joshi, A, Reddy, SVB, Bhatia, V et al. (2011) High prevalence of low bone mineral density in patients with tropical calcific pancreatitis. Pancreas 40, 762767.
61. Duggan, SN, Smyth, ND, Murphy, A et al. (2014) High prevalence of osteoporosis in patients with chronic pancreatitis: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 12, 219228.
62. Bang, UC, Benfield, T, Bendtsen, F et al. (2014) The risk of fractures among patients with cirrhosis or chronic pancreatitis. Clin Gastroenterol Hepatol 12, 320326.
63. Tignor, AS, Wu, BU, Whitlock, TL et al. (2010) High prevalence of low-trauma fracture in chronic pancreatitis. Am J Gastroenterol 105, 26802686.
64. Ghishan, FK & Kiela, PR (2011) Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases. AJP Gastrointest Liver Physiol 300, G191G201.
65. Duggan, SN, Purcell, C, Kilbane, M et al. (2015) An association between abnormal bone turnover, systemic inflammation, and osteoporosis in patients with chronic pancreatitis: a case-matched study. Am J Gastroenterol 110, 336345.
66. Gatti, D, Idolazzi, L & Fassio, A (2016) Vitamin D: not just bone, but also immunity. Minerva Med 107, 452460.
67. O'Sullivan, M (2015) Vitamin D as a novel therapy in inflammatory bowel disease: new hope or false dawn? Proc Nutr Soc 74, 512.
68. Löhr, JM, Dominguez-Munoz, E, Rosendahl, J et al. (2017) United European Gastroenterology evidence-based guidelines for the diagnosis and therapy of chronic pancreatitis (HaPanEU). United Eur Gastroenterol J 5, 153199.
69. Duggan, SN & Conlon, KC (2013) Bone health guidelines for patients with chronic pancreatitis. Gastroenterology 145, 911.
70. American Diabetes Association (2016) Classification and diagnosis of diabetes. Diabetes Care 39, Suppl. 1, S13S22.
71. American Diabetes Association (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care 37, Suppl. 1, S81S90.
72. Ewald, N, Kaufmann, C, Raspe, A et al. (2012) Prevalence of diabetes mellitus secondary to pancreatic diseases (type 3c). Diabetes Metab Res Rev 28, 338342.
73. Cui, Y & Andersen, DK (2011) Pancreatogenic diabetes: special considerations for management. Pancreatology 11, 279294.
74. Duggan, SN, Ewald, N, Kelleher, L et al. (2017) The nutritional management of type 3c (pancreatogenic) diabetes in chronic pancreatitis. Eur J Clin Nutr 71, 38.
75. Rickels, MR, Bellin, M, Toledo, FGS et al. (2013) Detection, evaluation and treatment of diabetes mellitus in chronic pancreatitis: recommendations from PancreasFest 2012. Pancreatology 13, 336342.
76. Ewald, N & Hardt, PD (2013) Diagnosis and treatment of diabetes mellitus in chronic pancreatitis. World J Gastroenterol 19, 72767281.
77. Ewald, N & Bretzel, RG (2013) Diabetes mellitus secondary to pancreatic diseases (type 3c)–are we neglecting an important disease? Eur J Intern Med 24, 203206.
78. American Diabetes Association (2016) Foundations of care and comprehensive medical evaluation. Diabetes Care 39, Suppl. 1, S23S35.
79. Duggan, S, Mohammed, A, Lawal, O et al. (2015) Differentiating type 2 DM and true type 3c DM in patients who have survived severe acute pancreatitis. Pancreatology 15, S80.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed