Skip to main content Accessibility help

New perspectives on bioactivity of olive oil: evidence from animal models, human interventions and the use of urinary proteomic biomarkers

  • S. Silva (a1) (a2) (a3), E. Combet (a4), M. E. Figueira (a3) (a5), T. Koeck (a6), W. Mullen (a7) and M. R. Bronze (a1) (a2) (a3) (a5)...


Olive oil (OO) is the primary source of fat in the Mediterranean diet and has been associated with longevity and a lower incidence of chronic diseases, particularly CHD. Cardioprotective effects of OO consumption have been widely related with improved lipoprotein profile, endothelial function and inflammation, linked to health claims of oleic acid and phenolic content of OO. With CVD being a leading cause of death worldwide, a review of the potential mechanisms underpinning the impact of OO in the prevention of disease is warranted. The current body of evidence relies on mechanistic studies involving animal and cell-based models, epidemiological studies of OO intake and risk factor, small- and large-scale human interventions, and the emerging use of novel biomarker techniques associated with disease risk. Although model systems are important for mechanistic research nutrition, methodologies and experimental designs with strong translational value are still lacking. The present review critically appraises the available evidence to date, with particular focus on emerging novel biomarkers for disease risk assessment. New perspectives on OO research are outlined, especially those with scope to clarify key mechanisms by which OO consumption exerts health benefits. The use of urinary proteomic biomarkers, as highly specific disease biomarkers, is highlighted towards a higher translational approach involving OO in nutritional recommendations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      New perspectives on bioactivity of olive oil: evidence from animal models, human interventions and the use of urinary proteomic biomarkers
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      New perspectives on bioactivity of olive oil: evidence from animal models, human interventions and the use of urinary proteomic biomarkers
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      New perspectives on bioactivity of olive oil: evidence from animal models, human interventions and the use of urinary proteomic biomarkers
      Available formats


Corresponding author

* Corresponding author: M. R. Bronze, fax (+351) 217946470, email


Hide All
1. Obied, HK, Prenzler, PD, Ryan, D et al. (2008) Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L. Nat Prod Rep 25, 11671179.
2. European Comission (2011) Official J Eur Union, 27.1.2011, Commission Regulation (EC) No 61/2011 of 24 January 2011. Available at
3. European Comission (2008) Official J Eur Union, 5.7.2008, Commission Regulation (EC) No 640/2008 of 4 July 2008. Available at
4. Tripoli, E, Giammanco, M, Tabacchi, G et al. (2005) The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 18, 98112.
5. Covas, MI (2007) Olive oil and the cardiovascular system. Pharmacol Res 55, 175186.
6. Lopez-Miranda, J, Perez-Jimenez, F, Ros, E et al. (2010) Olive oil and health: summary of the II International Conference on olive oil and health consensus report, Jaen and Cordoba (Spain) 2008. Nutr Metab Cardiovasc Dis 20, 284294.
7. Urpi-Sarda, M, Casas, R, Chiva-Blanch, G et al. (2012) Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomarkers related to atherosclerosis. Pharmacol Res 65, 577583.
8. Martinez-Lapiscina, EH, Clavero, P, Toledo, E et al. (2013) Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J Nutr Health Aging 17, 544552.
9. Kastorini, CM, Milionis, HJ, Goudevenos, JA et al. (2010) Mediterranean diet and coronary heart disease: is obesity a link? – A systematic review. Nutr Metab Cardiovasc Dis 20, 536551.
10. Razquin, C, Martinez, JA, Martinez-Gonzalez, MA et al. (2009) A 3 years follow-up of a Mediterranean diet rich in virgin olive oil is associated with high plasma antioxidant capacity and reduced body weight gain. Eur J Clin Nutr 63, 13871393.
11. Schwingshackl, L & Hoffmann, G (2014) Mediterranean dietary pattern, inflammation and endothelial function: a systematic review and meta-analysis of intervention trials. Nutr Metab Cardiovasc Dis 24, 929939.
12. Schwingshackl, L & Hoffmann, G (2014). Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis 13, 154.
13. Harwood, J & Aparico, R. (2000) Handbook of Olive oil Analysis and Properties. Gaithersburg, MD: Aspen.
14. Servili, M & Montedoro, G (2002) Contribution of phenolic compounds to virgin olive oil quality. Eur J Lipid Sci Technol 104, 602613.
15. Perez-Jimenez, F, Ruano, J, Perez-Martinez, P et al. (2007) The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res 51, 11991208.
16. Di Maio, I, Esposto, S, Taticchi, A et al. (2011) HPLC–ESI–MS investigation of tyrosol and hydroxytyrosol oxidation products in virgin olive oil. Food Chem 125, 2128.
17. Brenes, M, Garcia, A, Garcia, P et al. (2001) Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. J Agric food Chem 49, 56095614.
18. Hrncirik, K & Fritsche, S. (2004) Comparability and reliability of different techniques for the determination of phenolic compounds in virgin olive oil. Eur J Lipid Sci Technol 106, 540549.
19. Karkoula, E, Skantzari, A, Melliou, E et al. (2012) Direct measurement of oleocanthal and oleacein levels in olive oil by quantitative (1)H NMR. Establishment of a new index for the characterization of extra virgin olive oils. J Agric Food Chem 60, 1169611703.
20. Corona, G, Tzounis, X, Assunta Dessi, M et al. (2006) The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic Res 40, 647658.
21. Pinto, J, Paiva-Martins, F, Corona, G et al. (2011) Absorption and metabolism of olive oil secoiridoids in the small intestine. Br J Nutr 105, 16071618.
22. Aranzazu Soler, MPR, Alba, M., Shikha, S et al. (2010) Motilva. Digestion stability and evaluation of the metabolism and transport of olive oil phenols in the human small-intestinal epithelial Caco-2/TC7 cell line. Food Chem 119, 703714.
23. Vissers, MN, Zock, PL, Roodenburg, AJ et al. (2002) Olive oil phenols are absorbed in humans. J Nutr 132, 409417.
24. Garcia-Villalba, R, Carrasco-Pancorbo, A, Nevedomskaya, E et al. (2010) Exploratory analysis of human urine by LC-ESI-TOF MS after high intake of olive oil: understanding the metabolism of polyphenols. Anal Bioanal Chem 398, 463475.
25. Mateos, R, Goya, L & Bravo, L (2005) Metabolism of the olive oil phenols hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate by human hepatoma HepG2 cells. J Agric Food Chem 53, 98979905.
26. Miro-Casas, E, Covas, MI, Farre, M et al. (2003) Hydroxytyrosol disposition in humans. Clin Chem 49, 945952.
27. Miro Casas, E, Farre Albadalejo, M, Covas Planells, MI et al. (2001) Tyrosol bioavailability in humans after ingestion of virgin olive oil. Clin Chem 47, 341343.
28. Garcia-Villalba, R, Larrosa, M, Possemiers, S et al. (2014) Bioavailability of phenolics from an oleuropein-rich olive (Olea europaea) leaf extract and its acute effect on plasma antioxidant status: comparison between pre- and postmenopausal women. Eur J Nutr 53, 10151027.
29. Suarez, M, Valls, RM, Romero, MP et al. (2011) Bioavailability of phenols from a phenol-enriched olive oil. Br J Nutr 106, 16911701.
30. Preedy, VR & Watson, RR (2010). Olives and Olive oil in Health and Disease Prevention, 1st ed. San Diego: Elsevier.
31. Tuck, KL, Freeman, MP, Hayball, PJ et al. (2001). The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats. J Nutr 131, 19931996.
32. Gonzalez-Santiago, M, Fonolla, J & Lopez-Huertas, E (2010) Human absorption of a supplement containing purified hydroxytyrosol, a natural antioxidant from olive oil, and evidence for its transient association with low-density lipoproteins. Pharmacol Res 61, 364370.
33. Visioli, F, Galli, C, Grande, S et al. (2003) Hydroxytyrosol excretion differs between rats and humans and depends on the vehicle of administration. J Nutr 133, 26122615.
34. Mosele, JI, Martin-Pelaez, S, Macia, A et al. (2014) Faecal microbial metabolism of olive oil phenolic compounds: in vitro and in vivo approaches. Mol Nutr Food Res 58, 18091819.
35. Khymenets, O, Fito, M, Tourino, S et al. (2010) Antioxidant activities of hydroxytyrosol main metabolites do not contribute to beneficial health effects after olive oil ingestion. Drug Metab Dispos: Biol Fate Chem 38, 14171421.
36. Tuck, KL, Hayball, PJ & Stupans, I (2002) Structural characterization of the metabolites of hydroxytyrosol, the principal phenolic component in olive oil, in rats. J Agric Food Chem 50, 24042409.
37. Kotronoulas, A, Pizarro, N, Serra, A et al. (2013) Dose-dependent metabolic disposition of hydroxytyrosol and formation of mercapturates in rats. Pharmacol Res 77, 4756.
38. Laura Rubió, AS, Alba, M., Carme, P. et al. (2014). In vivo distribution and deconjugation of hydroxytyrosol phase II metabolites in red blood cells: a potential new target for hydroxytyrosol. J Funct Foods 10, 139143.
39. Hamden, K, Allouche, N, Damak, M et al. (2009) Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem Biol Interact 180, 421432.
40. Sanchez de Medina, V, Priego-Capote, F & Luque de Castro, MD (2012) Characterization of refined edible oils enriched with phenolic extracts from olive leaves and pomace. J Agric Food Chem 60, 58665873.
41. Suarez, M, Romero, MP & Motilva, MJ (2010) Development of a phenol-enriched olive oil with phenolic compounds from olive cake. J Agric Food Chem 58, 1039610403.
42. Pashkow, FJ (2011) Oxidative stress and inflammation in heart disease: do antioxidants have a role in treatment and/or prevention? Int J Inflamm 2011, 514623.
43. Vlantis, K & Pasparakis, M (2010) Role of TNF in pathologies induced by nuclear factor kappa B deficiency. Curr Dir Autoimmun 11, 8093.
44. Beauchamp, GK, Keast, RS, Morel, D et al. (2005) Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437, 4546.
45. Beauchamp, GK, Keast, RS, Morel, D et al. (2005) Ibuprofen-like activity in extra-virgin olive oil. Nature 437, 4546.
46. Tulp, M, Bruhn, JG & Bohlin, L (2006) Food for thought. Drug Discov Today 11, 11151121.
47. O'Connor, Á (2014) An overview of the role of diet in the treatment of rheumatoid arthritis. Nutr Bull 39, 7488.
48. Waterman, E & Lockwood, B (2007) Active components and clinical applications of olive oil. Altern Med Rev 12, 331342.
49. Silva, BS, Sepodes, B, Rocha, J et al. (2015) Protective effects of hydroxytyrosol-supplemented refined olive oil in animal models of acute inflammation and rheumatoid arthritis. J Nutr Biochem 26, 360368.
50. European Comission (2012) Official J Eur Union, 25.5.2012, Comission Regulation (EC) No 432/2012 of 16 May 2012. Available at
51. Sanchez-Fidalgo, S, Sanchez de Ibarguen, L, Cardeno, A et al. (2012). Influence of extra virgin olive oil diet enriched with hydroxytyrosol in a chronic DSS colitis model. Eur J Nutr 51, 497506.
52. Rosillo, MA, Alcaraz, MJ, Sanchez-Hidalgo, M et al. (2014) Anti-inflammatory and joint protective effects of extra-virgin olive-oil polyphenol extract in experimental arthritis. J Nutr Biochem 25, 12751281.
53. Impellizzeri, D, Esposito, E, Mazzon, E et al. (2011) Oleuropein aglycone, an olive oil compound, ameliorates development of arthritis caused by injection of collagen type II in mice. J Pharmacol Exp Therap 339, 859869.
54. Martinez-Dominguez, E, de la Puerta, R & Ruiz-Gutierrez, V (2001) Protective effects upon experimental inflammation models of a polyphenol-supplemented virgin olive oil diet. Inflamm Res 50, 102106.
55. Bignotto, L, Rocha, J, Sepodes, B et al. (2009) Anti-inflammatory effect of lycopene on carrageenan-induced paw oedema and hepatic ischaemia-reperfusion in the rat. Br J Nutr 102, 126133.
56. Gong, D, Geng, C, Jiang, L et al. (2009) Effects of hydroxytyrosol-20 on carrageenan-induced acute inflammation and hyperalgesia in rats. Phytother Res 23, 646650.
57. Gimeno, E, de la Torre-Carbot, K, Lamuela-Raventos, RM et al. (2007) Changes in the phenolic content of low density lipoprotein after olive oil consumption in men. A randomized crossover controlled trial. Br J Nutr 98, 12431250.
58. Covas, MI, Nyyssonen, K, Poulsen, HE et al. (2006) The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med 145, 333341.
59. Covas, MI, de la Torre, K, Farre-Albaladejo, M et al. (2006) Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Rad Biol Med 40, 608616.
60. Fito, M, Cladellas, M, de la Torre, R et al. (2005) Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: a randomized, crossover, controlled, clinical trial. Atherosclerosis 181, 149158.
61. Weinbrenner, T, Fito, M, de la Torre, R et al. (2004) Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. J Nutr 134, 23142321.
62. Marrugat, J, Covas, MI, Fito, M et al. (2004) Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation – a randomized controlled trial. Eur J Nutr 43, 140147.
63. Ruiz-Canela, M & Martinez-Gonzalez, MA (2011) Olive oil in the primary prevention of cardiovascular disease. Maturitas 68, 245250.
64. Katan, MB, Zock, PL & Mensink, RP (1994) Effects of fats and fatty acids on blood lipids in humans: an overview. Am J Clin Nutr 60, 6 Suppl., 1017S1022S.
65. Chrysohoou, C, Panagiotakos, DB, Pitsavos, C et al. (2004) Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: the ATTICA Study. J Am Coll Cardiol 44, 152158.
66. Huang, CL & Sumpio, BE (2008) Olive oil, the Mediterranean diet, and cardiovascular health. J Am Coll Surg 207, 407416.
67. Covas, MI, Konstantinidou, V & Fito, M (2009) Olive oil and cardiovascular health. J Cardiovasc Pharmacol 54, 477482.
68. Krauss, RM & Dreon, DM (1995) Low-density-lipoprotein subclasses and response to a low-fat diet in healthy men. Am J Clin Nutr 62, 478S487S.
69. Bos, G, Poortvliet, MC, Scheffer, PG et al. (2007) Dietary polyunsaturated fat intake is associated with low-density lipoprotein size, but not with susceptibility to oxidation in subjects with impaired glucose metabolism and type II diabetes: the Hoorn study. Eur J Clin Nutr 61, 205211.
70. Chait, A, Brazg, RL, Tribble, DL et al. (1993) Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am J Med 94, 350356.
71. Aguilera, CM, Mesa, MD, Ramirez-Tortosa, MC et al. (2004) Sunflower oil does not protect against LDL oxidation as virgin olive oil does in patients with peripheral vascular disease. Clin Nutr 23, 673681.
72. Kratz, M, Cullen, P, Kannenberg, F et al. (2002) Effects of dietary fatty acids on the composition and oxidizability of low-density lipoprotein. Eur J Clin Nutr 56, 7281.
73. FDA (2004) FDA Allows Qualified Health Claim to Decrease Risk of Coronary Heart Disease.
74. Fuentes, F, Lopez-Miranda, J, Perez-Martinez, P et al. (2008) Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with alpha-linolenic acid on postprandial endothelial function in healthy men. Br J Nutr 100, 159165.
75. Capurso, C, Massaro, M, Scoditti, E et al. (2014) Vascular effects of the Mediterranean diet Part I: anti-hypertensive and anti-thrombotic effects. Vasc Pharmacol 63, 118126.
76. Khurana, S, Venkataraman, K, Hollingsworth, A et al. (2013) Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5, 37793827.
77.EFSA Panel on Dietetic Products, Nutrition and Allergies (2011) Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA J 9, 2033.
78.EFSA Panel on Dietetic Products, Nutrition and Allergies (2011) Scientific Opinion on the substantiation of health claims related to olive oil and maintenance of normal blood LDL-cholesterol concentrations (ID 1316, 1332), maintenance of normal (fasting) blood concentrations of triglycerides (ID 1316, 1332), maintenance of normal blood HDL-cholesterol concentrations (ID 1316, 1332) and maintenance of normal blood glucose concentrations (ID 4244) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 9, 2044.
79. Vissers, MN, Zock, PL & Katan, MB (2004) Bioavailability and antioxidant effects of olive oil phenols in humans: a review. Eur J Clin Nutr 58, 955965.
80. Rietjens, SJ, Bast, A & Haenen, GR (2007) New insights into controversies on the antioxidant potential of the olive oil antioxidant hydroxytyrosol. J Agric Food Chem 55, 76097614.
81. Mastralexi, A, Nenadis, N & Tsimidou, MZ (2014) Addressing analytical requirements to support health claims on ‘olive oil polyphenols’ (EC Regulation 432/2012). J Agric Food Chem 62, 24592461.
82. Romero, C & Brenes, M (2012) Analysis of total contents of hydroxytyrosol and tyrosol in olive oils. J Agric Food Chem 60, 90179022.
83. Teres, S, Barcelo-Coblijn, G, Benet, M et al. (2008) Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci USA 105, 1381113816.
84. Yang, Q, Alemany, R, Casas, J et al. (2005) Influence of the membrane lipid structure on signal processing via G protein-coupled receptors. Mol Pharmacol 68, 210217.
85. Lahey, R, Wang, X, Carley, AN et al. (2014) Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride. Circulation 130, 17901799.
86. Rudolph, V, Rudolph, TK, Schopfer, FJ et al. (2010) Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc Res 85, 155166.
87. Coles, B, Bloodsworth, A, Clark, SR et al. (2002) Nitrolinoleate inhibits superoxide generation, degranulation, and integrin expression by human neutrophils: novel antiinflammatory properties of nitric oxide-derived reactive species in vascular cells. Circulat Res 91, 375381.
88. Coles, B, Bloodsworth, A, Eiserich, JP et al. (2002) Nitrolinoleate inhibits platelet activation by attenuating calcium mobilization and inducing phosphorylation of vasodilator-stimulated phosphoprotein through elevation of cAMP. J Biol Chem 277, 58325840.
89. Charles, RL, Rudyk, O, Prysyazhna, O et al. (2014) Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid inhibition of soluble epoxide hydrolase. Proc Natl Acad Sci USA 111, 81678172.
90. Dhalla, NS, Temsah, RM & Netticadan, T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18, 655673.
91. Sugamura, K & Keaney, JF Jr (2011) Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 51, 978992.
92. Raedschelders, K, Ansley, DM & Chen, DD (2012) The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Therap 133, 230255.
93. Ross, R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340, 115126.
94. Dell'Agli, M, Fagnani, R, Galli, GV et al. (2010) Olive oil phenols modulate the expression of metalloproteinase 9 in THP-1 cells by acting on nuclear factor-kappaB signaling. J Agric Food Chem 58, 22462252.
95. Dell'Agli, M, Fagnani, R, Mitro, N et al. (2006) Minor components of olive oil modulate proatherogenic adhesion molecules involved in endothelial activation. J Agric Food Chem 54, 32593264.
96. Gonzalez-Correa, JA, Navas, MD, Munoz-Marin, J et al. (2008) Effects of hydroxytyrosol and hydroxytyrosol acetate administration to rats on platelet function compared to acetylsalicylic acid. J Agric Food Chem 56, 78727876.
97. Dollery, CM & Libby, P (2006) Atherosclerosis and proteinase activation. Cardiovasc Res 69, 625635.
98. Barderas, MG, Vivanco, F & Alvarez-Llamas, G (2013) Vascular proteomics. Methods Mol Biol 1000, 120.
99. von Zur Muhlen, C, Schiffer, E, Zuerbig, P et al. (2009) Evaluation of urine proteome pattern analysis for its potential to reflect coronary artery atherosclerosis in symptomatic patients. J Proteome Res 8, 335345.
100. Zimmerli, LU, Schiffer, E, Zurbig, P et al. (2008) Urinary proteomic biomarkers in coronary artery disease. Mol Cell Proteom 7, 290298.
101. Kalela, A, Koivu, TA, Sisto, T et al. (2002) Serum matrix metalloproteinase-9 concentration in angiographically assessed coronary artery disease. Scand J Clin Lab Invest 62, 337342.
102. Scoditti, E, Nestola, A, Massaro, M et al. (2014) Hydroxytyrosol suppresses MMP-9 and COX-2 activity and expression in activated human monocytes via PKCalpha and PKCbeta1 inhibition. Atherosclerosis 232, 1724.
103. Scoditti, E, Calabriso, N, Massaro, M et al. (2012) Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys 527, 8189.
104. Delles, C, Schiffer, E, von Zur Muhlen, C et al. (2010) Urinary proteomic diagnosis of coronary artery disease: identification and clinical validation in 623 individuals. J Hypertens 28, 23162322.
105. Monea, S, Lehti, K, Keski-Oja, J et al. (2002) Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. J Cell Physiol 192, 160170.
106. Lafleur, MA, Hollenberg, MD, Atkinson, SJ et al. (2001) Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species. Biochem J 357, 107115.
107. Rajagopalan, S, Meng, XP, Ramasamy, S et al. (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98, 25722579.
108. Oak, MH, El Bedoui, J, Anglard, P et al. (2004) Red wine polyphenolic compounds strongly inhibit pro-matrix metalloproteinase-2 expression and its activation in response to thrombin via direct inhibition of membrane type 1-matrix metalloproteinase in vascular smooth muscle cells. Circulation 110, 18611867.
109. El Bedoui, J, Oak, MH, Anglard, P et al. (2005) Catechins prevent vascular smooth muscle cell invasion by inhibiting MT1-MMP activity and MMP-2 expression. Cardiovasc Res 67, 317325.
110. Silva, S, Bronze, MR, Figueira, ME et al. (2015) Impact of a 6-wk olive oil supplementation in healthy adults on urinary proteomic biomarkers of coronary artery disease, chronic kidney disease, and diabetes (types 1 and 2): a randomized, parallel, controlled, double-blind study. Am J Clin Nutr 101, 4454.
111. Wang, M, Lamers, RJ, Korthout, HA et al. (2005) Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother Res 19, 173182.
112. Finley Austin, MJ & Babiss, L (2006) Commentary: where and how could biomarkers be used in 2016? AAPS J 8, E185E189.
113. Schanstra, JP & Mischak, H (2015) Proteomic urinary biomarker approach in renal disease: from discovery to implementation. Pediatr Nephrol 30, 713725.
114. Mischak, H, Allmaier, G, Apweiler, R et al. (2010) Recommendations for biomarker identification and qualification in clinical proteomics. Sci Transl Med 2, 46ps42.
115. Stegemann, C, Didangelos, A, Barallobre-Barreiro, J et al. (2013) Proteomic identification of matrix metalloproteinase substrates in the human vasculature. Circ-Cardiovasc Gene 6, 106117.
116. Mischak, H & Rossing, P (2010) Proteomic biomarkers in diabetic nephropathy – reality or future promise? Nephrol Dial Transplant 25, 28432845.
117. Lescuyer, P, Hochstrasser, D & Rabilloud, T (2007) How shall we use the proteomics toolbox for biomarker discovery? J Proteome Res 6, 33713376.
118. Wisniewski, JR, Zougman, A, Nagaraj, N et al. (2009) Universal sample preparation method for proteome analysis. Nat Methods 6, 359362.
119. Husi, H, Van Agtmael, T, Mullen, W et al. (2014) Proteome-based systems biology analysis of the diabetic mouse aorta reveals major changes in fatty acid biosynthesis as potential hallmark in diabetes mellitus-associated vascular disease. Circ-Cardiovasc Gene 7, 161170.
120. Thongboonkerd, V, McLeish, KR, Arthur, JM et al. (2002) Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int 62, 14611469.
121. Thongboonkerd, V & Malasit, P (2005) Renal and urinary proteomics: current applications and challenges. Proteomics 5, 10331042.
122. Mischak, H, Kolch, W, Aivaliotis, M et al. (2010) Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteom Clin Appl 4, 464478.
123. Albalat, A, Franke, J, Gonzalez, J et al. (2013) Urinary proteomics based on capillary electrophoresis coupled to mass spectrometry in kidney disease. Methods Mol Biol 919, 203213.
124. Good, DM, Zurbig, P, Argiles, A et al. (2010) Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteom 9, 24242437.
125. Metzger, J, Kirsch, T, Schiffer, E et al. (2010) Urinary excretion of twenty peptides forms an early and accurate diagnostic pattern of acute kidney injury. Kidney Int 78, 12521262.
126. Dawson, J, Walters, M, Delles, C et al. (2012) Urinary proteomics to support diagnosis of stroke. PLoS ONE 7, e35879.
127. Mischak, H & Schanstra, JP (2011) CE-MS in biomarker discovery, validation, and clinical application. Proteom Clin Appl 5, 923.
128. Coon, JJ, Zurbig, P, Dakna, M et al. (2008) CE–MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteom Clin Appl 2, 964.
129. Lee, RT & Libby, P (1997) The unstable atheroma. Arterioscler Thromb Vasc Biol 17, 18591867.
130. Zurbig, P, Jerums, G, Hovind, P et al. (2012) Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 61, 33043313.
131. de Roos, B, Zhang, X, Rodriguez Gutierrez, G et al. (2011) Anti-platelet effects of olive oil extract: in vitro functional and proteomic studies. Eur J Nutr 50, 553562.
132. Arbones-Mainar, JM, Ross, K, Rucklidge, GJ et al. (2007) Extra virgin olive oils increase hepatic fat accumulation and hepatic antioxidant protein levels in APOE-/- mice. J Proteome Res 6, 40414054.
133. Ge, Y & Wang, TJ (2012) Identifying novel biomarkers for cardiovascular disease risk prediction. J Intern Med 272, 430439.
134. Sharma, P, Cosme, J & Gramolini, AO (2013) Recent advances in cardiovascular proteomics. J Proteomics 81, 314.
135. Fliser, D, Novak, J, Thongboonkerd, V et al. (2007) Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 18, 10571071.
136. Julian, BA, Suzuki, H, Suzuki, Y et al. (2009) Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteom Clin Appl 3, 10291043.
137. Perona, JS, Cabello-Moruno, R & Ruiz-Gutierrez, V (2006) The role of virgin olive oil components in the modulation of endothelial function. J Nutr Biochem 17, 429445.
138. Guillen, N, Acin, S, Navarro, MA et al. (2008) Squalene in a sex-dependent manner modulates atherosclerotic lesion which correlates with hepatic fat content in apoE-knockout male mice. Atherosclerosis 197, 7283.
139. Monte, E & Vondriska, TM (2014) Epigenomes: the missing heritability in human cardiovascular disease? Proteomics Clin Appl 8, 480487.
140. Camargo, A, Ruano, J, Fernandez, JM et al. (2010) Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genomics 11, 253.
141. Konstantinidou, V, Covas, MI, Munoz-Aguayo, D et al. (2010) In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: a randomized controlled trial. FASEB J 24, 25462557.
142. Vazquez-Fresno, R, Llorach, R, Urpi-Sarda, M et al. (2015) Metabolomic pattern analysis after mediterranean diet intervention in a nondiabetic population: A 1- and 3-year follow-up in the PREDIMED study. J Proteome Res 14, 531540.
143. Noratto, GD, Angel-Morales, G, Talcott, ST et al. (2011) Polyphenolics from acai (Euterpe oleracea Mart.) and red muscadine grape (Vitis rotundifolia) protect human umbilical vascular Endothelial cells (HUVEC) from glucose- and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126. J Agric Food Chem 59, 79998012.
144. Milenkovic, D, Jude, B & Morand, C (2013) miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med 64, 4051.
145. Garcia-Gonzalez, DL & Aparicio, R (2010) Research in olive oil: challenges for the near future. J Agric Food Chem 58, 1256912577.
146. Martin-Pelaez, S, Covas, MI, Fito, M et al. (2013) Health effects of olive oil polyphenols: recent advances and possibilities for the use of health claims. Mol Nutr Food Res 57, 760771.
147. Dunn, MJ (2013) Proteomics clinical applications reviews 2013. Proteomics Clin Appl 7, 47.
148. Levi, B & Werman, MJ (1998) Long-term fructose consumption accelerates glycation and several age-related variables in male rats. J Nutr 128, 14421449.
149. Kontogianni, VG, Charisiadis, P, Margianni, E et al. (2013) Olive leaf extracts are a natural source of advanced glycation end product inhibitors. J Med Food 16, 817822.
150. Vlassopoulos, A, Lean, ME & Combet, E (2014) Protein-phenolic interactions and inhibition of glycation – combining a systematic review and experimental models for enhanced physiological relevance. Food and Funct 5, 26462655.


New perspectives on bioactivity of olive oil: evidence from animal models, human interventions and the use of urinary proteomic biomarkers

  • S. Silva (a1) (a2) (a3), E. Combet (a4), M. E. Figueira (a3) (a5), T. Koeck (a6), W. Mullen (a7) and M. R. Bronze (a1) (a2) (a3) (a5)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed