Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-26T12:45:49.128Z Has data issue: false hasContentIssue false

Physiologically-active compounds in plant foods: An overview

Published online by Cambridge University Press:  11 October 2007

M. J. C. Rhodes
Affiliation:
Bioactive Compounds Group, Department of Food Molecular Biochemistry, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Physiologically-Active Substances in Plant Foods’
Copyright
Copyright © The Nutrition Society 1996

References

Aldercreutz, H., Markkanen, H. & Watanabe, S. (1993). Plasma concentrations of phyto-oestrogens in Japanese men. Lancet 342, 12091210.CrossRefGoogle Scholar
Azen, E. A., Latrellie, P. & Niece, R. L. (1993). PRB1 gene variants coding for length and null polymorphisms among human salivary Ps, PmF, PmS and Pe proline-rich proteins. American Journal of Human Genetics 53, 264278.Google ScholarPubMed
Belman, S. (1983). Onion and garlic oils inhibit tumor promotion. Carcinogenesis 4, 10631065.CrossRefGoogle ScholarPubMed
Block, E. (1992). The organosulfur chemistry of the Genus Allium – Implications for the organic chemistry of sulfur. Angewandte Chemie – International Edition in English 31, 11351178.Google Scholar
Block, G., Patterson, B. & Subar, A. (1992). Fruit, vegetables and cancer prevention. A review of the epidemiological evidence. Nutrition and Cancer 18, 129.CrossRefGoogle ScholarPubMed
Boullin, D. J. (1981). Garlic as a platelet inhibitor. Lancet i, 776777.Google Scholar
Boutin, J. A., Meunier, F., Lambert, P.-H., Hennig, P., Berlin, D., Serkiz, B., Volland, J.-P. (1993). In vivo and in vitro glucuronidation of the flavonoid diosmetin in rats. Drug Metabolism and Deposition 21, 11571166.Google Scholar
Bradfield, C. A. & Bjeldanes, L. F. (1987). Structure-activity relationships of dietary indoles: A proposed mechanism of action as modifiers of xenobiotic metabolism. Journal of Toxicology and Environmental Health 21, 311323.CrossRefGoogle ScholarPubMed
Cassidy, A., Bingham, S. & Setchell, K. D. R. (1994). Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. American Journal of Clinical Nutrition 60, 333340.CrossRefGoogle Scholar
Das, N. P. & Ratty, A. K. (1986). Effects of flavonoids on induced non-enzymic lipid peroxidation. In Plant Flavonoids in Biology and Medicine: Piochemical Pharmacological and Structure Activity Relationships, pp. 243247 [Cody, V., Middleton, E. & Harborne, J. B., editor]. New York: Alan R. Liss.Google Scholar
Edwards, S. J., Musker, D., Collin, H. A. & Britton, G. (1994). The analysis of S-alk(en)yl-L-cysteine sulphoxides (flavour precursors) from species of Allium by high performance liquid chromatography. Phytochemical Analysis 5, 49.CrossRefGoogle Scholar
Graham, S. (1983). Results of case – control studies of diet and cancer in Buffalo, New York. Cancer Research 43, 2409s-2413s.Google ScholarPubMed
Hackett, A. M. (1986). The metabolism of flavonoid compounds in mammals. In Plant Flavonoids in Biology and Medicine: Biochemical Pharmacological and Structure Activity Relationships, pp. 17194 [Cody, V., Middeleton, E. & Harborne, J. B., editor]. New York: Alan R. Liss.Google Scholar
Hagerman, A. E. & Butler, L. G. (1981). The specificity of proanthocyanin-protein interactions. Journal of Biological Chemistry 256, 44944497.Google Scholar
Hertog, M., Feskens, E. J. M., Hollman, P. C. H., Katan, M. B. & Kromhout, D. (1993 a). Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 342, 10071011.CrossRefGoogle ScholarPubMed
Hertog, M., Hollman, P. C. H., Katan, M. B. & Kromhout, D. (1936). Intake of potentially anticarcinogemc flavonoids and the determinants in adults in the Netherlands. Nutrition and Cancer 20, 2129.CrossRefGoogle Scholar
Johnson, I. T., Williamson, G. & Musk, S. R. R. (1994). Anticarcinogenic factors in plant foods; a new class of nutrients?. Nutrition Research Reviews 7, 175204.CrossRefGoogle Scholar
Kühnau, J. (1973). The flavonoids: a class of semi-essential food components: their role in human nutrition. World Review of Nutrition and Dietetics 24, 117191.CrossRefGoogle Scholar
Lancaster, J. E. & Collin, H. A. (1981). Presence of alliinase in isolated vacuoles and of alkyl cysteine sulphoxides in the cytoplasm of bulbs of onion (Allium cepa). Plant Science Letters 22, 169176.Google Scholar
Lawson, L. D., Ransom, D. K. & Hughes, B. G. (1992). Inhibition of whole blood platelet-aggregation by compounds in garlic clove extracts and commercial garlic products. Thrombosis Research 65, 141156.Google Scholar
Leibovitz, B. E. & Mueller, J. A. (1993). Bioflavonoids and polyphenols: medical applications. Journal of Optimal Nutrition 2, 1735.Google Scholar
Murray, N. J. & Williamson, M. P. (1994). Conformational study of a salivary proline-rich protein repeat sequence. European Journal of Biochemistry 219, 915921.CrossRefGoogle ScholarPubMed
Musk, S. R. R., Astley, S. B., Edwards, S. M., Stephenson, P., Hubert, R. B. & Johnson, I. T. (1995). Cytotoxic and clastogenic effects of benzyl isothiocyanate towards cultured mammalian cells. Food and Chemical Toxicology 33, 3137.Google Scholar
Nagae, S., Ushijima, S., Imai, J., Kasuga, S., Matsuura, H., Itakura, Y. & Higashi, Y. (1994). Pharmacokinetics of the garlic compound S-allylcysteine. Planra Medica 60, 214217.CrossRefGoogle ScholarPubMed
Pierpoint, W. S. (1990). Flavonoids in human food and animal feedstuffs. In Flavonoids in Biology and Medicine, vol. 3, Current Issues in Flavonoid Research, pp. 497514 [Das, N. P., editor]. Singapore: National University of Singapore.Google Scholar
Rabinokov, A., Zhu, X.-Z., Graft, G., Galili, G. & Mirelman, D. (1994). Alliin lyase (Alliinase) from garlic: Biochemical characterisation and cDNA cloning. Applied Biochemistry and Biotechnology 48, 149171.CrossRefGoogle Scholar
Rhodes, M. J. C. (1994). Physiological roles for secondary metabolites in plants; some progress, many outstanding problems. Plant Molecular Biology 24, 120.CrossRefGoogle ScholarPubMed
Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M. & Pridham, J. B. (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research 22, 375383.Google Scholar
Sanejima, K., Kanazawa, K., Ashida, H. & Danno, G. (1995). Luteolin: a strong antimutagen against dietary carcinogen, Trp-p-2 in peppermint, sage and thyme. Journal of Agricultural and Food Chemistry 43, 410414.CrossRefGoogle Scholar
Sparins, V. L., Barany, G. & Wattenberg, L. W. (1988). Effects of organosulfur compounds from garlic and onions on benzo(α)pyrene-induced neoplasia and glutathione-S-transferase activity in the mouse. Carcinogenesis 9, 131134.Google Scholar
Van Damme, E. J. M., Smeets, K., Torrekens, S., Van Leuven, F. & Peumans, W. J. (1992). Isolation and characterisation of alliinase cDNA clones from garlic (Allium sativum L.) and related species. European Journal of Biochemistry 209, 751757.CrossRefGoogle ScholarPubMed
Verhagen, H., Poulsen, H. E., Loft, S., van Poppel, G., Willems, M. I. & van Bladeren, P. J. (1995). Reduction of oxidative DNA-damage in humans by Brussels sprouts. Carcinogenesis 16, 969970.CrossRefGoogle ScholarPubMed
Wargovich, M. J. (1987). Diallyl sulfide, a flavour component of garlic (Allium sativum) inhibits dimethyhydrazine-induced colon cancer. Carcinogenesis 8, 487489.CrossRefGoogle ScholarPubMed
Wargovich, M. J., Woods, C., Eng, V. W. S., Stephens, I. C. & Gray, K. (1988). Chemoprotection of N-nitrosomethylbenzylamine-induced esophageal cancer in rats by the naturally-occurring thioether diallyl sulfide. Cancer Research 48, 68726875.Google Scholar
Wattenburg, L. W. & Loub, W. D. (1978). Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Research 38, 14101413.Google Scholar
Wilkinson, A. P., Rhodes, M. J. C. & Fenwick, R. G. (1984). Myrosinase activity in cruciferous vegetables. Journal of the Science of Food and Agriculture 35, 543552.Google Scholar
Xue, J., Lenman, M., Falk, A. & Rask, L. (1992). The glucosinolate-degrading enzyme myrosinase in the Brassicacae is encoded by a gene family. Plant Molecular Biology 18, 387398.CrossRefGoogle Scholar
You, W.-C, Blot, W. J., Chang, Y.-S., Ershow, A., Yang, Z. T., An, Q., Henderson, B. E., Fraumeni, J. F. Jr, Wang, T.-G. (1989). Allium vegetables and reduced risk of stomach cancer. Journal of the National Cancer Institute 81, 162164.Google Scholar
Zhang, Y., Kensler, T. W., Cho, C.-G., Posner, G. H. & Talalay, P. (1994). Anticarcinogenic-activities of sulforaphane and structurally related norbornyl isothiocyanates. Proceedings of the National Academy of Sciences, USA 91, 31473150.Google Scholar
Zhang, Y. & Talalay, P. (1994). Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Research 54, Suppl. 1976s1981s.Google Scholar
Zhang, Y., Talalay, P., Cho, C.-G. & Posner, G. H. (1992). A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proceedings of the National Academy of Sciences, USA 89, 23992403.CrossRefGoogle Scholar