Skip to main content Accessibility help
×
×
Home

Plenary Lecture 3 Food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods: Conference on ‘Over- and undernutrition: challenges and approaches’

  • D. Joe Millward (a1) and Tara Garnett (a2)
Abstract

Legally-binding legislation is now in place to ensure major reductions in greenhouse gas emissions in the UK. Reductions in intakes of meat and dairy products, which account for approximately 40% of food-related emissions, are an inevitable policy option. The present paper assesses, as far as is possible, the risk to nutritional status of such a policy in the context of the part played by these foods in overall health and well-being and their contribution to nutritional status for the major nutrients that they supply. Although meat may contribute to saturated fat intakes and a higher BMI, moderate meat consumption within generally-healthy population groups has no measurable influence on morbidity or mortality. However, high consumption of red and processed meat has been associated with increased risk of colo-rectal cancer and recent advice is to reduce intakes to a maximum of 70 g/d. Such reductions in meat and haem-Fe intake are unlikely to influence Fe status in functional terms. However, overall protein intakes would probably fall, with the potential for intakes to be less than current requirements for the elderly. Whether it is detrimental to health is uncertain and controversial. Zn intakes are also likely to fall, raising questions about child growth that are currently unanswerable. Milk and dairy products, currently specifically recommended for young children and pregnant women, provide 30–40% of dietary Ca, iodine, vitamin B12 and riboflavin. Population groups with low milk intakes generally show low intakes and poor status for each of these nutrients. Taken together it would appear that the reductions in meat and dairy foods, which are necessary to limit environmental damage, do pose serious nutritional challenges for some key nutrients. These challenges can be met, however, by improved public health advice on alternative dietary sources and by increasing food fortification.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Plenary Lecture 3 Food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Plenary Lecture 3 Food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Plenary Lecture 3 Food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Professor D. Joe Millward, email d.millward@surrey.ac.uk
References
Hide All
1.Intergovernmental Panel on Climate Change (2007) Summary for policymakers. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 124 [Metz, B, Davidson, OR, Bosch, PR, Dave, R and Meyer, LA, editors]. Cambridge: Cambridge University Press; available at http://www.ipcc.ch/pdf/assessment-report/ar4/wg3/ar4-wg3-spm.pdf
2.Committee on Climate Change (2008) Building a Low-carbon Economy – The UK's Contribution to Tackling Climate Change. The First Report of the Committee on Climate Change. London: The Stationery Office.
3.Bellarby, J, Foereid, B, Hastings, A et al. (2008) Cool Farming: Climate Impacts of Agriculture and Mitigation Potential. Amsterdam: Greenpeace International; available at http://www.greenpeace.org/raw/content/international/press/reports/cool-farming-full-report.pdf
4.Garnett, T (2008) Cooking up a storm. Food, greenhouse gas emissions and our changing climate. http://www.fcrn.org.uk/frcnPubs/publications/PDFs/CuaS_web.pdf
5.Garnett, T (2009) Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ Sci Policy 12, 491503.
6.Food and Agriculture Organization (2006) Livestock's Long Shadow – Environmental Issues and Options. Rome: FAO.
7.Tukker, A, Huppes, G, Guinée, J et al. (2006) Environmental impact of products (EIPRO): Analysis of the life cycle environmental impacts related to the total final consumption of the EU25. European Commission Technical Report EUR 22284 EN. http://ftp.jrc.es/EURdoc/eur22284en.pdf
8.Carlsson-Kanyama, A & Gonzalez, AD (2009) Potential contributions of food consumption patterns to climate change. Am J Clin Nutr 89, Suppl., 1704S1709S.
9.Friends of the Earth Netherlands (2008) Soy consumption for feed and fuel in the European Union. http://www.foeeurope.org/agrofuels/FFE/Profundo%20report%20final.pdf
10.Henderson, L, Gregory, J & Swan, G (2002) The National Diet and Nutrition Survey: Adults Aged 19 to 64 Years. vol. 1: Types and Quantities of Foods Consumed. London: The Stationery Office.
11.Henderson, L, Gregory, J, Irving, K et al. (2003) The National Diet and Nutrition Survey: adults aged 19 to 64 years. vol. 2: Energy, Protein, Carbohydrate, Fat and Alcohol Intake. London: The Stationery Office.
12.Scientific Advisory Committee on Nutrition (2009) Draft SACN report on iron and health – June 2009. http://www.sacn.gov.uk/pdfs/draft_iron_and_health_report_complete_june_2009_consultation.pdf (accessed July 2009).
13.Food Standards Agency (2009) Eat well be well. http://www.eatwell.gov.uk/healthydiet/ (accessed July 2009).
14.Department of Health (1998) Nutritional Aspects of the Development of Cancer. Report on Health and Social Subjects no. 48. London: H. M. Stationery Office.
15.Marmot, M, Atinmo, T, Byers, T et al. (2007) Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective. WCRF/AICR Expert Report. Washington, DC: American Institute for Cancer Research; available at http://www.dietandcancerreport.org/downloads/Second_Expert_Report.pdf
16.Key, TJ, Appleby, PN, Spencer, EA et al. (2009) Mortality in British vegetarians: results from the European Prospective Investigation into Cancer and Nutrition (EPIC-Oxford). Am J Clin Nutr 89, Suppl., 1613S1619S.
17.Key, TJ, Fraser, GE, Thorogood, M et al. (1999) Mortality in vegetarians and nonvegetarians: detailed findings from a collaborative analysis of 5 prospective studies. Am J Clin Nutr 70, Suppl., 516S524S.
18.Key, TJ, Appleby, PN, Spencer, EA et al. (2009) Cancer incidence in vegetarians: results from the European Prospective Investigation into Cancer and Nutrition (EPIC-Oxford). Am J Clin Nutr 89, Suppl., 1620S1626S.
19.Sanders, TAB (1999) The nutritional adequacy of plant-based diets. Proc Nutr Soc 58, 265269.
20.O'Connell, JM, Dibley, MJ, Sierra, J et al. (1989) Growth of vegetarian children: The Farm Study. Pediatrics 84, 475481.
21.Sanders, TAB & Manning, J (1992) The growth and development of vegan children. J Hum Nutr Diet 5, 1121.
22.Grillenberger, M, Neumann, CG, Murphy, SP et al. (2003) Food supplements have a positive impact on weight gain and the addition of animal source foods increases lean body mass of Kenyan schoolchildren. J Nutr 133, 3957S3964S.
23.Whaley, SE, Sigman, M, Neumann, C et al. (2003) The impact of dietary intervention on the cognitive development of Kenyan school children. J Nutr 133, 3965S3971S.
24.Hopkin, M (2005) Meat diet boosts kids' growth. Nature; Epublication 22 February 2005; doi:10.1038/news050221–5.
25.Murphy, SP, Gewa, C, Liang, LJ et al. (2003) School snacks containing animal source foods improve dietary quality for children in rural Kenya. J Nutr 133, 3950S3956S.
26.Waterlow, JC (1992) Protein Energy Malnutrition, pp. 200202. London: Edward Arnold.
27.Millward, DJ & Rivers, JP (1989) The need for indispensable amino acids: the concept of the anabolic drive. Diabetes Metab Rev 5, 191211.
28.Yahya, ZAH, Bates, PC & Millward, DJ (1990) Responses to protein deficiency of plasma and tissue insulin-like growth factor-I levels and proteoglycan synthesis rates in rat skeletal muscle and bone. J Endocr 127, 497503.
29.Yahya, ZAH & Millward, DJ (1994) Dietary protein and the regulation of long bone and muscle growth in the rat. Clin Sci 87, 213224.
30.Hoppe, C, Mølgaard, C & Michaelsen, KF (2004) High intakes of skimmed milk, but not meat, increase serum IGF-1 and IGFBP-3 in eight year old boys. Eur J Clin Nutr 58, 12111216.
31.Hoppe, C, Udam, TR, Lauritzen, L et al. (2004) Animal protein intake, serum insulin-like growth factor I, and growth in healthy 2.5-y-old Danish children. Am J Clin Nutr 80, 447452.
32.Vesa, TH, Marteau, P & Korpela, R (2000) Lactose intolerance. J Am Coll Nutr 19, 165S175S.
33.Lanou, AJ (2009) Should dairy be recommended as part of a healthy vegetarian diet? Counterpoint. Am J Clin Nutr 89, Suppl., 1638S1642S.
34.Weaver, CM (2009) Should dairy be recommended as part of a healthy vegetarian diet? Point. Am J Clin Nutr 89, Suppl., 1634S1637S.
35.Jackson, KA & Savaiano, DA (2001) Lactose maldigestion, calcium intake and osteoporosis in African-, Asian-, and Hispanic-Americans. J Am Coll Nutr 20, 198S207S.
36.Hertzler, SR & Savaiano, DA (1996) Colonic adaptation to daily lactose feeding in lactose maldigesters reduces lactose intolerance. Am J Clin Nutr 64, 232236.
37.Henderson, L, Irving, K, Gregory, J et al. (2003) The National Diet and Nutrition Survey: Adults Aged 19 to 64 Years. vol. 3: Vitamin and Mineral Intake and Urinary Analytes. London: The Stationery Office.
38.Stoltzfus, RJ (2001) Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research and programs. J Nutr 131, 697S701S.
39.Scientific Advisory Committee on Nutrition (2008) The Nutritional Wellbeing of the British Population. London: The Stationery Office.
40.Green, R, Charlton, R, Seftel, H et al. (1968) Body iron excretion in man: a collaborative study. Am J Med 45, 336353.
41.Hunt, JR & Roughead, ZK (2000) Adaptation of iron absorption in men consuming diets with high or low iron bioavailability. Am J Clin Nutr 71, 94–102.
42.Roughead, ZK, Zito, CA & Hunt, JR (2005) Inhibitory effects of dietary calcium on the initial uptake and subsequent retention of heme and nonheme iron in humans: comparisons using an intestinal lavage method. Am J Clin Nutr 82, 589597.
43.Singh, M, Sanderson, P, Hurrell, RF et al. (2006) Iron bioavailability: UK Food Standards Agency workshop report. Br J Nutr 96, 985990.
44.Lonnerdal, B (2009) Soybean ferritin: implications for iron status of vegetarians. Am J Clin Nutr 89, 1680S1685S.
45.Worthington-Roberts, BS, Breskin, MW & Monsen, ER (1988) Iron status of premenopausal women in a university community and its relationship to habitual dietary sources of protein. Am J Clin Nutr 47, 275279.
46.Reddy, S & Sanders, TAB (1990) Haematological studies on pre-menopausal Indian and Caucasian vegetarians compared with Caucasian omnivores. Br J Nutr 64, 331338.
47.Donovan, UM & Gibson, RS (1995) Iron and zinc status of young women aged 14 to 19 years consuming vegetarian and omnivorous diets. J Am Coll Nutr 14, 463472.
48.Hunt, JR (2002) Moving toward a plant-based diet: are iron and zinc at risk? Nutrition Reviews 60, 127134.
49.Nathan, I, Hackett, AF & Kirby, S (1996) The dietary intake of a group of vegetarian children aged 7–11 years compared with matched omnivores. Br J Nutr 75, 533544.
50.Salonen, JT, Nyyssonen, K, Korpela, H et al. (1992) High stored iron levels are associated with excess risk of myocardial infarction in Eastern Finnish men. Circulation 86, 803811.
51.Gregory, J, Collins, DL, Davies, PSW et al. (1995) National Diet and Nutrition Survey: Children Aged 1.5 to 4.5 Years. vol. 1: Report of the Diet and Nutrition Survey. London: H. M. Stationery Office.
52.Gibson, SA (1999) Iron intake and iron status of preschool children: associations with breakfast cereals, vitamin C and meat. Public Health Nutr 2, 521528.
53.Doyle, W, Crawley, H, Robert, H et al. (1999) Iron deficiency in older people: interactions between food and nutrient intakes with biochemical measures of iron; further analysis of the National Diet and Nutrition Survey of people aged 65 years and over. Eur J Clin Nutr 53, 552559.
54.Finch, S, Doyle, W, Lowe, C et al. (1998) National Diet and Nutrition Survey: People Aged 65 Years and Over. vol. 1: Report of the Diet and Nutrition Survey. London: The Stationery Office.
55.Houston, DK, Nicklas, BJ, Ding, J et al. (2008) Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 87, 150155.
56.Elliott, P, Stamler, J, Dyer, AR et al. (2006) Association between protein intake and blood pressure: The INTERMAP Study. Arch Intern Med 166, 7987.
57.Haddad, EH, Berk, LS, Kettering, JD et al. (1999) Dietary intake and biochemical, hematologic, and immune status of vegans compared with nonvegetarians. Am J Clin Nutr 70, Suppl., 586S593S.
58.Millward, DJ (1999) The nutritional value of plant based diets in relation to human amino acid and protein requirements. Proc Nutr Soc 58, 249260.
59.Millward, DJ & Jackson, A (2004) Protein:energy ratios of current diets in developed and developing countries compared with a safe protein:energy ratio: implications for recommended protein and amino acid intakes. Public Health Nutr 7, 387405.
60.World Health Organization/Food and Agriculture Organization/United Nations University (2007) Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation. WHO Technical Report Series no. 935. Geneva: WHO.
61.Millward, DJ (2003) An adaptive metabolic demand model for protein and amino acid requirements. Br J Nutr 90, 249260.
62.World Health Organization (1985) Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. WHO Technical Report Series no. 724 Geneva: WHO.
63.Millward, DJ (2008) Sufficient protein for our elders? Am J Clin Nutr 88, 11871188.
64.Paddon-Jones, D, Short, KR, Campbell, WW et al. (2008) Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 87, Suppl., 1562S1566S.
65.Baumgartner, RN, Koehler, KM, Gallagher, D et al. (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147, 755763.
66.Starling, RD, Ades, PA & Poehlman, ET (1999) Physical activity, protein intake, and appendicular skeletal muscle mass in older men. Am J Clin Nutr 70, 9196.
67.Mitchell, D, Haan, MN, Steinberg, FM et al. (2003) Body composition in the elderly: the influence of nutritional factors and physical activity. J Nutr Health Aging 7, 130139.
68.Millward, DJ (1999) Optimal intakes of protein in the human diet. Proc Nutr Soc 58, 403413.
69.Rodriguez, NR & Garlick, PJ (2008) Introduction to Protein Summit 2007: Exploring the impact of high-quality protein on optimal health. Am J Clin Nutr 87, Suppl., 1551S1553S.
70.Abelow, BJ, Holford, TR & Insogna, KL (1992) Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcif Tissue Int 50, 1418.
71.Darling, AL, Millward, DJ, Torgerson, DJ et al. (2009) Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr; Epublication 4 November 2009; doi:10.3945/ajcn.2009.27799.
72.Cousins, RJ (2006) Zinc. In Present Knowledge in Nutrition, vol. 1, 9th ed., pp. 455457 [Bowman, BA and Russell, RM, editors]. Washington, DC: ILSI Press.
73.World Health Organization (2004) Zinc. Vitamin and Mineral Requirements in Human Nutrition. Report of a Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements, 2nd ed., pp. 230245. Geneva: WHO.
74.Fischer Walker, CL, Ezzati, M & Black, RE (2009) Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur J Clin Nutr 63, 591597.
75.Brown, KH, Peerson, JM, Rivera, J et al. (2002) Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized, controlled trials. Am J Clin Nutr 75, 10621071.
76.Thane, CW, Bates, CJ & Prentice, A (2004) Zinc and vitamin A intake and status in a national sample of British young people aged 4–18 y. Eur J Clin Nutr 58, 363375.
77.Amirabdollahian, F & Ash, R (2009) Is the zinc intake of young people in the UK adequate?' Eur J Clin Nutr 63, 699700.
78.Thane, CW, Bates, CJ & Prentice, A (2009) ‘Is the zinc intake of young people in the UK adequate? Reply. Eur J Clin Nutr 63, 700702.
79.Hunt, JR (2002) Moving toward a plant-based diet: are iron and zinc at risk? Nutr Rev 60, 127134.
80.Wada, L, Turnland, JR & King, JC (1985) Zinc utilization in young men fed adequate and low zinc intakes. J Nutr 115, 13451354.
81.Haddad, EH, Berk, LS, Kettering, JD et al. (1999) Dietary intake and biochemical, hematologic, and immune status of vegans compared with nonvegetarians. Am J Clin Nutr 70, Suppl., 586S593S.
82.Rivera, JA, Hotz, C, Gonzalez-Cossıo, T et al. (2003) The effect of micronutrient deficiencies on child growth: A review of results from community-based supplementation trials. J Nutr 133, 4010S4020S.
83.Gibson, RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc 65, 5160.
84.Sanders, TAB (1988) Growth and development of British vegan children. Am J Clin Nutr 48, 822825.
85.Weaver, CM (2006) Calcium. Present Knowledge in Nutrition, vol. 1, 9th ed., pp. 373382 [Bowman, BA and Russell, RM, editors]. Washington, DC: ILSI Press.
86.Department of Health (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report on Health and Social Subjects no. 41. London: H. M. Stationery Office.
87.Food and Nutrition Board, Institute of Medicine (1997) Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC: National Academies Press.
88.Prentice, A (2007) Mining the depths: metabolic insights into mineral nutrition. Proc Nutr Soc 66, 512521.
89.Prentice, A, Schoenmakers, I, Laskey, MA et al. (2006) Nutrition and bone growth and development. Proc Nutr Soc 65, 348360.
90.Lanou, AJ, Berkow, SE & Barnard, ND (2005) Calcium, dairy products, and bone health in children and young adults: a reevaluation of the evidence. Pediatrics 115, 736743.
91.Winzenberg, TM, Shaw, K, Fryer, J et al. (2006) Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. Br Med J 333, 775.
92.Department of Health (1998) Nutrition and Bone Health: With Particular Reference to Ca and Vitamin D. Report on Health and Social Subjects no. 49. London: The Stationery Office.
93.World Health Organization/Food and Agriculture Organization (2003) Diet, Nutrition and the Prevention of Chronic Disease. Geneva: WHO.
94.Appleby, P, Roddam, A, Allen, N et al. (2007) Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. Eur J Clin Nutr 61, 14001406.
95.Zimmerman, M (2010) Iodine deficiency: not only a problem in developing countries Proc Nutr Soc 69 (epublication ahead of print version; doi: 10.1017/S0029665110).
96.Walker, S, Wachs, T, Meeks Gardner, J et al. (2007) Child development: risk factors for adverse outcomes in developing countries. Lancet 369, 145157.
97.Rayman, M, Sleeth, M, Walter, A et al. (2008) Iodine deficiency in UK women of child-bearing age. Proc Nutr Soc 67, E399.
98.Rayman, M (1997) Dietary selenium: time to act. Br Med J 314, 387.
99.Cannel, R (1997) Cobalamin, the stomach, and aging. Am J Clin Nutr 66, 750759.
100.Allen, LH (2009) How common is vitamin B-12 deficiency? Am J Clin Nutr 89, Suppl., 693S696S.
101.Elmadfa, I & Singer, I (2009) Vitamin B-12 and homocysteine status among vegetarians: a global perspective. Am J Clin Nutr 89, Suppl., 1693S1698S.
102.Ray, JG, Wyatt, PR, Thompson, MD et al. (2007) Vitamin B12 and the risk of neural tube defects in a folic-acid-fortified population. Epidemiology 18, 362366.
103.Dror, DK & Allen, LH (2008) Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms. Nutr Rev 66, 250255.
104.Guerra-Shinohara, EM, Morita, OE, Peres, S et al. (2004) Low ratio of S-adenosylmethionine to S-adenosylhomocysteine is associated with vitamin deficiency in Brazilian pregnant women and newborns. Am J Clin Nutr 80, 13121321.
105.Rogers, LM, Boy, E, Miller, JW et al. (2003) High prevalence of cobalamin deficiency in Guatemalan schoolchildren: associations with low plasma holotranscobalamin II and elevated serum methylmalonic acid and plasma homocysteine concentrations. Am J Clin Nutr 77, 433440.
106.Bates, CJ, Schneede, J, Mishra, G et al. (2003) Relationship between methylmalonic acid, homocysteine, vitamin B12 intake and status and socio-economic indices, in a subset of participants in the British National Diet and Nutrition Survey of people aged 65 y and over. Eur J Clin Nutr 57, 349357.
107.McCracken, C, Hudson, P, Ellis, R et al. (2006) Methylmalonic acid and cognitive function in the Medical Research Council Cognitive Function and Ageing Study. Am J Clin Nutr 84, 14061411.
108.Hin, H, Clarke, R, Sherliker, P et al. (2006) Clinical relevance of low serum vitamin B12 concentrations in older people: the Banbury B12 study. Age Ageing 35, 416422.
109.Clarke, R, Birks, J, Nexo, E et al. (2007) Low vitamin B-12 status and risk of cognitive decline in older adults. Am J Clin Nutr 86, 13841391.
110.Tucker, KL, Rich, S, Rosenberg, I et al. (2000) Plasma vitamin B-12 concentrations relate to intake source in the Framingham Offspring Study. Am J Clin Nutr 71, 514522.
111.Vogiatzoglou, A, Smith, D, Nurk, E et al. (2009) Dietary sources of vitamin B-12 and their association with plasma vitamin B-12 concentrations in the general population: the Hordaland Homocysteine Study. Am J Clin Nutr 89, 10781087.
112.Siekmann, JH, Allen, LH, Bwibo, NO et al. (2003) Kenyan school children have multiple micronutrient deficiencies, but increased plasma vitamin B-12 is the only detectable micronutrient response to meat or milk supplementation. J Nutr 133, 3972S3980S.
113.Koebnick, C, Hoffmann, I, Dagnelie, PC et al. (2004) Long-term ovo-lacto vegetarian diet impairs vitamin B-12 status in pregnant women. J Nutr 134, 33193326.
114.Herrmann, W, Schorr, H, Obeid, R et al. (2003) Vitamin B-12 status, particularly holotranscobalamin II and methylmalonic acid concentrations, and hyperhomocysteinemia in vegetarians. Am J Clin Nutr 78, 131136.
115.McNulty, H, McKinley, MC, Wilson, B et al. (2002) Impaired functioning of thermolabile methylenetetrahydrofolate reductase is dependent on riboflavin status: implications for riboflavin requirements. Am J Clin Nutr 76, 436441.
116.Ronnenberg, AG, Goldman, MB, Chen, D et al. (2002) Preconception homocysteine and B vitamin status and birth outcomes in Chinese women. Am J Clin Nutr 76, 13851391.
117.Refsum, H, Nurk, E, Smith, AD et al. (2006) The Hordaland Homocysteine Study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr 136, 1731S1740S.
118.Lewis, SJ, Ebrahim, S & Davey Smith, G (2005) Meta-analysis of MTHFR 677C→T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? Br Med J 331, 1053.
119.Meat Free Mondays (2008) Meat free Mondays. http://www.meatfreemondays.co.uk/
120.World Health Organization/Food and Agriculture Organization (2006) Guidelines on Food Fortification with Micronutrients [Allen, L, de Benoist, B, Dary, O and Hurrell, R, editors]. Geneva: WHO; available at http://www.who.int/nutrition/publications/micronutrients/guide_food_fortification_micronutrients.pdf
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed