Skip to main content
×
×
Home

Potential role of the intestinal microbiota of the mother in neonatal immune education*

  • Anne Donnet-Hughes (a1), Pablo F. Perez (a2), Joël Doré (a2), Marion Leclerc (a2), Florence Levenez (a2), Jalil Benyacoub (a1), Patrick Serrant (a1), Iris Segura-Roggero (a1) and Eduardo J. Schiffrin (a3)...
Abstract

Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Potential role of the intestinal microbiota of the mother in neonatal immune education*
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Potential role of the intestinal microbiota of the mother in neonatal immune education*
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Potential role of the intestinal microbiota of the mother in neonatal immune education*
      Available formats
      ×
Copyright
Corresponding author
Corresponding author: Eduardo J. Schiffrin, fax +41 21 924 7894, email eduardo.schiffrin@nestle.com
Footnotes
Hide All

Present address: CIDCA-Cátedra de Microbiología. Facultad de Ciencias Exactas – UNLP, 47 y 116, La Plata (1900), Argentina.

*

This article represents the presentation given at the 3rd International Immunonutrition Workshop; the original article was previously published elsewhere(42).

Footnotes
References
Hide All
1.Stagg, AJ, Hart, AL, Knight, SC et al. (2003) The dendritic cell: its role in intestinal inflammation and relationship with gut bacteria. Gut 52, 15221529.
2.Falk, PG, Hooper, LV, Midtvedt, T et al. (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62, 11571170.
3.Wright, AL, Bauer, M, Naylor, A et al. (1998) Increasing breastfeeding rates to reduce infant illness at the community level. Pediatrics 101, 837844.
4.Lonnerdal, B (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77, 1537S1543S.
5.Labeta, MO, Vidal, K, Nores, JE et al. (2000) Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14. J Exp Med 191, 18071812.
6.Vidal, K, Donnet-Hughes, A & Granato, D (2002) Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and gram-negative bacteria. Responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and gram-negative bacteria. Infect Immun 70, 20572064.
7.Moughan, PJ, Birtles, MJ, Cranwell, PD et al. (1992) The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. Nutritional triggers for health and disease. World Rev Nutr Diet 67, 40–113.
8.Gavin, A & Ostovar, K (1977) Microbiological characterization of human milk. J Food Prot 40, 614616.
9.Martín, R, Langa, S, Reviriego, C et al. (2003) Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143, 754758.
10.West, PA, Hewitt, JH & Murphy, OM (1979) The influence of methods of collection and storage on the bacteriology of human milk. J Appl Bacteriol 46, 269277.
11.El Mohandes, AE, Schatz, V, Keiser, JF et al. (1993) Bacterial contaminants of collected and frozen human milk used in an intensive care nursery. Am J Infect Control 21, 226230.
12.Lepage, P, Seksik, P, Sutren, M et al. (2005) Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 11, 473480.
13.Mangin, I, Bonnet, R, Seksik, P et al. (2004) Molecular inventory of faecal microflora in patients with Crohn's disease. FEMS Microbiol Ecol 50, 2536.
14.Ho, PC & Lawton, JW (1978) Human colostral cells: phagocytosis and killing of E. coli and C. albicans. Human colostral cells: phagocytosis and killing of E. coli and C. albicans. J Pediatr 93, 910915.
15.Kite, P, Millar, MR, Gorham, P et al. (1988) Comparison of five tests used in diagnosis of neonatal bacteraemia. Arch Dis Child 63, 639643.
16.Granato, D, Bergonzelli, GE, Pridmore, RD et al. (2004) Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72, 21602169.
17.Buescher, ES & McIlheran, SM (1993) Polymorphonuclear leukocytes and human colostrum: effects of in vivo and in vitro exposure. J Pediatr Gastroenterol Nutr 17, 424433.
18.Ichikawa, M, Sugita, M, Takahashi, M et al. (2003) Breast milk macrophages spontaneously produce granulocyte-macrophage colony-stimulating factor and differentiate into dendritic cells in the presence of exogenous interleukin-4 alone. Immunology 108, 189195.
19.Roux, ME, McWilliams, M, Phillips-Quagliata, JM et al. (1977) Origin of IgA secretory plasma cells in the mammary gland. J Exp Med 146, 13111322.
20.Goldman, AS & Goldblum, RM (1997) Transfer of maternal leukocytes to the infant by human milk. Curr Top Microbiol Immunol 222, 205213.
21.Uhlig, HH & Powrie, F (2003) Dendritic cells and the intestinal bacteria flora: a role for localized mucosal immune responses. J Clin Invest 112, 648651.
22.MacPherson, AJ & Uhr, T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 16621665.
23.Nagl, M, Kacani, L, Mullauer, B et al. (2002) Phagocytosis and killing of bacteria by professional phagocytes and dendritic cells. Clin Diagn Lab Immunol 9, 11651168.
24.Zhou, L, Yoshimura, Y, Huang, Y et al. (2000) Two independent pathways of maternal cell transmission to offspring: through placenta during pregnancy and by breast-feeding after birth. Immunology 101, 570580.
25.Theill, LE, Boyle, WJ & Penninger, JM (2002) RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 20, 795823.
26.Anderson, DM, Maraskovsky, E, Billingsley, WL et al. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175179.
27.Josien, R, Wong, BR, Li, HL et al. (1999) TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 162, 25622568.
28.Kong, YY, Yoshida, H, Sarosi, I et al. (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315323.
29.Fata, JE, Kong, YY, Li, J et al. (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103, 4150.
30.Wong, R, Josien, R, Lee, SY et al. (1997) TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 186, 20752080.
31.Uemura, H, Yasui, T, Kiyokawa, M et al. (2002) Serum osteoprotegerin/osteoclastogenesis-inhibitory factor during pregnancy and lactation and the relationship with calcium-regulating hormones and bone turnover markers. J Endocrinol 174, 353359.
32.Vidal, K, van den Broek, P, Lorget, F et al. (2004) Osteoprotegerin in human milk: a potential role in the regulation of bone metabolism and immune development. Pediatr Res 55, 10011008.
33.Williamson, E, Bilsborough, JM & Viney, JL (2002) Regulation of mucosal dendritic cell function by receptor activator of NF-kappa B (RANK)/RANK ligand interactions: impact on tolerance induction. J Immunol 169, 36063612.
34.Sacks, GP, Redman, CW & Sargent, IL (2003) Monocytes are primed to produce the Th1 type cytokine IL-12 in normal human pregnancy: an intracellular flow cytometric analysis of peripheral blood mononuclear cells. Clin Exp Immunol 131, 490497.
35.Naccasha, N, Gervasi, MT, Chaiworapongsa, T et al. (2001) Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am J Obstet Gynecol 185, 11181123.
36.Kupferminc, MJ, Peaceman, AM, Wigton, TR et al. (1994) Immunoreactive tumor necrosis factor-alpha is elevated in maternal plasma but undetected in amniotic fluid in the second trimester. Am J Obstet Gynecol 171, 976979.
37.Ito, S, Ishii, KJ, Shirota, H et al. (2004) CpG oligodeoxynucleotides improve the survival of pregnant and fetal mice following Listeria monocytogenes infection. Infect Immun 72, 35433548.
38.Ueda, Y, Hagihara, M, Okamoto, A et al. (2003) Frequencies of dendritic cells (myeloid DC and plasmacytoid DC) and their ratio reduced in pregnant women: comparison with umbilical cord blood and normal healthy adults. Hum Immunol 64, 11441151.
39.Maraskovsky, E, Brasel, K, Teepe, M et al. (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184, 19531962.
40.Nikkari, S, McLaughlin, IJ, Bi, W et al. (2001) Does blood of healthy subjects contain bacterial ribosomal DNA? J Clin Microbiol 39, 19561959.
41.McLaughlin, RW, Vali, H, Lau, PC et al. (2002) Are there naturally occurring pleomorphic bacteria in the blood of healthy humans? J Clin Microbiol 40, 47714775.
42.Perez, PF, Doré, J, Leclerc, M et al. (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119, e724e732.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed