Skip to main content
×
×
Home

Recent advances in the nutritional biochemistry of trivalent chromium

  • John B. Vincent (a1)
Abstract

The nutritional biochemistry of trivalent Cr has been a poorly understood field of study; investigations of the biochemistry of the other essential transition metals have not proven as problematic. Despite over four decades of endeavour, only recently has a picture of the role of Cr potentially started to be defined. The biologically-relevant form is the trivalent ion. Cr3+ appears to be required for proper carbohydrate and lipid metabolism in mammals, although fortunately Cr deficiency is difficult to achieve. Conditions that increase circulating glucose and insulin concentrations increase urinary Cr output. Cr is probably excreted in the form of the oligopeptide chromodulin. Chromodulin may be the key to understanding the role of Cr at a molecular level, as the molecule has been found to bind to activated insulin receptor, stimulating its kinase activity. A mechanism for the action of chromodulin has recently been proposed; this mechanism can serve as a potential framework for further studies to test the role of Cr in metabolism. An examination of the nutritional supplement chromium picolinate illustrates some of the difficulties associated with these biochemical studies.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Recent advances in the nutritional biochemistry of trivalent chromium
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Recent advances in the nutritional biochemistry of trivalent chromium
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Recent advances in the nutritional biochemistry of trivalent chromium
      Available formats
      ×
Copyright
Corresponding author
Corresponding author: Professor John B. Vincent, fax +1 205 348 9203, email jvincent@bama.ua.edu
References
Hide All
Althuis, MD, Jordan, NE, Ludington, EA & Wittes, JT (2002) Glucose and insulin responses to dietary chromium supplements: a meta-analysis. American Journal of Clinical Nutrition 76, 148155.
Anderson, RA (1998) Chromium, glucose tolerance and diabetes. Journal of the American College of Nutrition 17, 548555.
Anderson, RA (2000) Chromium in the prevention and control of diabetes. Diabetes Metabolism (Paris) 26, 2227.
Anderson, RA, Bryden, NA & Polansky, MM, (1993) Dietary intake of calcium, chromium, copper, iron, magnesium, manganese and zinc: duplicate plate values corrected using nutrient intake. Journal of the American Dietetic Association 93, 462464.
Anderson, RA, Bryden, NA & Polansky, MM, (1997a) Lack of toxicity of chromium chloride and chromium picolinate in rats. Journal of the American College of Nutrition 16, 273279.
Anderson, RA, Bryden, NA, Polansky, MM & Reisner, S (1990) Urinary chromium excretion and insulinogenic properties of carbohydrates. American Journal of Clinical Nutrition 51, 864868.
Anderson, RA, Cheng, NC, Bryden, NA, Polansky, MM, Cheng, N, Chi, J & Feng, J (1997b) Elevated levels of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 46, 17861791.
Anderson, RA & Kozlovsky, AS (1985) Chromium intake, absorption and excretion of subjects consuming self-selected diets. American Journal of Clinical Nutrition 41, 11771183.
Anderson, RA & Polansky, MM (1995) Dietary and metabolite effects on trivalent chromium retention and distribution in rats. Biological Trace Element Research 50, 97108.
Bagchi, D, Bagchi, M, Balmoori, J, Ye, X & Stohs, SJ (1997) Comparative induction of oxidative stress in cultured J774A.1 macrophage cells by chromium picolinate and chromium nicotinate. Research Communications in Molecular Pathology and Pharmacology 97, 335346.
Bagchi, D, Stohs, SJ, Downs, BW, Bagchi, M & Preuss, HG (2002) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180, 522.
Bunker, VW, Lawson, MS, Delues, HT & Clayton, BE (1984) The uptake and excretion of chromium by the elderly. American Journal of Clinical Nutrition 39, 797802.
Cefalu, WT, Wang, ZQ, Zhang, XH, Baldor, LC & Russell, JC (2002) Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. Journal of Nutrition 132, 11071114.
Cerulli, J, Grabe, DW, Gauthier, I, Malone, M & McGoldrick, MD (1998) Chromium picolinate toxicity. Annals of Pharmacotherapy 32, 428431.
Cheng, N, Zhu, X, Shi, H, Wu, W, Chi, J, Cheng, J & Anderson, RA (1999) Follow-up survey of people in China with type 2 diabetes mellitus consuming supplemental chromium. Journal of Trace Elements in Experimental Research 12, 5560.
Clarkson, PM (1997) Effects of exercise on chromium levels: is supplementation required?. Sports Medicine 23, 341349.
Clodfelder, BJ, Emamaullee, J, Hepburn, DD, Chakov, NE, Nettles, H & Vincent, JB (2001) The trail of chromium(III) from the blood to the urine: the roles of transferrin and chromodulin. Journal of Biological Inorganic Chemistry 6, 608617.
Davis, CM, Royer, AC & Vincent, JB (1997) Synthetic multinuclear chromium assembly activates insulin receptor kinase activity: functional model for low-molecular-weight chromium-binding substance. Inorganic Chemistry 36, 53165320.
Davis, CM, Sumrall, KH & Vincent, JB (1996) The biologically active form of chromium may activate a membrane phosphotyrosine phosphatase (PTP). Biochemistry 35, 1296312969.
Davis, CM & Vincent, JB (1997a) Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry 36, 43824385.
Davis, CM & Vincent, JB (1997b) Isolation and characterization of a biologically active chromium oligopeptide from bovine liver. Archives of Biochemistry and Biophysics 339, 335343.
Evans, GW (1989) The effect of chromium picolinate on insulin controlled parameters in humans. International Journal of Biosocial Medicine and Research 11, 163180.
Fowler, JF Jr (2000) Systemic contact dermatitis caused by oral chromium picolinate. Cutis 65 116.
Ghosh, D, Bhattacharya, B, Mukherjee, B, Manna, B, Sinha, M, Chowdhury, J & Chowdhury, S (2002) Role of chromium supplementation in Indians with type 2 diabetes mellitus. Journal of Nutritional Biochemistry 13, 690697.
Gibson, RS & Scythes, CA (1984) Chromium, selenium, and other trace element intakes of a selected sample of Canadian premenopausal women. Biological Trace Element Research 6, 105116.
Hellerstein, MK (1998) Is chromium supplementation effective in managing type II diabetes?. Nutrition Reviews 56, 302306.
Hepburn, DDD, Burney, JM, Woski, SA & Vincent, JB (2003a) The nutritional supplement chromium picolinate generates oxidative DNA damage and peroxidized lipids in vivo. Polyhedron 22, 455463.
Hepburn, DDD & Vincent, JB (2002) In vivo distribution of chromium from chromium picolinate in rats and implications for the safety of the dietary supplement. Chemical Research in Toxicology 15, 93100.
Hepburn, DDD & Vincent, JB (2003) Tissue and subcellular distribution of chromium picolinate with time after entering the bloodstream. Journal of Inorganic Biochemistry 94, 8693.
Hepburn, DDD, Xiao, J, Bindom, S, Vincent, JB & O'Donnell, J (2003b) Nutritional supplement chromium picolinate causes sterility and lethal mutations in Drosophila melanogaster. Proceedings of the National Academy of Sciences USA 100, 37663771.
Huszonek, J (1993) Over-the-counter chromium picolinate. American Journal of Psychiatry 150 1560.
Jacquamet, L, Sun, Y, Hatfield, J, Gu, W, Cramer, SP, Crowder, MW, Lorigan, GA, Vincent, JB & Latour, J-M (2003) Characterization of chromodulin by X-ray absorption and electron paramagnetic resonance spectroscopies and magnetic susceptibility measurements. Journal of the American Chemical Society 125, 774780.
Jeejeebhoy, KN (1999) Chromium and parenteral nutrition. Journal of Trace Elements in Experimental Medicine 12, 8589.
Johnson, MK, Powell, DB & Cannon, RD (1981) Vibrational spectra of carboxylate complexes-III. Spectrochimica Acta, 37A 9951006.
Jovanovic, L, Gutierrez, M & Peterson, CM (1999) Chromium supplementation for women with gestational diabetes mellitus. Journal of Trace Elements in Experimental Medicine 12, 9197.
Kareus, SA, Kelley, C, Walton, HS & Sinclair, PC (2001) Release of Cr(III) from Cr(III) picolinate upon metabolic activation. Journal of Hazardous Materials 84B 163174.
Kato, I, Vogelman, JH, Dilman, V, Karkoszka, J, Frenkel, K, Durr, NP, Orentreich, N & Toniolo, P (1998) Effect of supplementation with chromium picolinate on antibody titers to 5-hydroxymethyl uracil. European Journal of Epidemiology 14, 621626.
Kim, D-S Kim, T-W Park, I-K Kang, J-S & Om, A-S (2002) Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body weight in dexamethasone-treated rats. Metabolism 51, 589594.
Kozlovsky, AS, Moser, PB, Reisner, RA & Anderson, RA (1986) Effects of diets high in simple sugars on urinary chromium losses. Metabolism 35, 515518.
Kreider, RB (1999) Dietary supplements and the promotion of muscle growth with resistance exercise. Sports Medicine 27, 97110.
Lukaski, HC (1999) Chromium as a supplement. Annual Review of Nutrition 19, 279302.
Mahboob, L McNeil, L, Tolliver, T & Ogden, L (2002) Effects of chromium picolinate on antioxidant enzyme levels in rats. Toxicological Sciences 66, Suppl.1, 32.
Manygoats, KR, Yazzie, M & Stearns, DM (2002) Ultrastructural damage in chromium picolinate-treated cells: a TEM study. Journal of Biological Inorganic Chemistry 7, 791798.
Martin, WR & Fuller, RE (1998) Suspected chromium picolinate-induced rhabdomyolysis. Pharmacotherapy 18, 860862.
Mirasol, F (2000) Chromium picolinate market sees robust growth and high demand. Chemical Market Reporter 257 2000.
Morris, B MacNeil, S, Fraser, R & Gray, T (1995) Increased urine chromium excretion in normal pregnancy. Clinical Chemistry 41, 15441545.
Morris, BW MacNeil, S, Hardisty, CA, Heller, S, Burgin, C & Gray, TA (1999) Chromium homeostasis in patients with type II (NIDDM) diabetes. Journal of Trace Elements in Medicine and Biology 13, 5761.
Morris, BW, MacNeil, S, Stanley, K & Gray, TA (1993) The inter-relationship between insulin and chromium in hyperinsulinaemic euglycaemic clamps in healthy volunteers. Journal of Endocrinology 139, 339345.
Nielsen, F (1996) Controversial chromium: does the superstar mineral of the Mountebanks receive appropriate attention from clinicians and nutritionists?. Nutrition Today 31, 226233.
Nissen, SL & Sharp, RL (2003) Effect of dietary supplements on lean mass and strength gains with resistance exercise: A meta-analysis. Journal of Applied Physiology 94, 651659.
Offenbacher, EG, Spencer, H, Dowling, HJ & Pi-Sunyer, FX (1986) Metabolic chromium balances in men. American Journal of Clinical Nutrition 44, 7782.
Olin, KL, Stearns, DM, Armstrong, WH & Keen, CL (1994) Comparative retention/adsorption of 51 chromium ( 51 Cr) from 51 Cr chloride, 51 Cr nicotinate, and 51 Cr picolinate in a rat model. Trace Elements and Electrolytes 11, 182186.
Pittler, MH, Stevinson, C & Ernst, E (2003) Chromium picolinate for reducing body weight: Meta-analysis of randomized trials. International Journal of Obesity 27, 522529.
Ravina, A, Slezak, L, Mirsky, N & Anderson, RA (1999a) Control of steroid-induced diabetes with supplemental chromium. Journal of Trace Elements in Medicine and Biology 12, 375378.
Ravina, A, Slezak, L, Mirsky, N, Bryden, NA & Anderson, RA, (1999b) Reversal of corticosteroid-induced diabetes mellitus with supplemental chromium. Diabetic Medicine 16, 164167.
Shute, AA & Vincent, JB (2001) The stability of the biomimetic cation triaqua-μ-oxohexapropionatotrichromium(III) in vivo in rats. Polyhedron 20, 22412252.
Shute, AA & Vincent, JB (2002) The fate of the biomimetic cation triaqua-μ-oxohexapropionatotrichromium(III) in rats. Journal of Inorganic Biochemistry 89, 272278.
Speetjens, JK, Collins, RA, Vincent, JB & Woski, SA (1999a) The nutritional supplement chromium(III) tris(picolinate) cleaves DNA. Chemical Research in Toxicology 12, 483487.
Speetjens, JK, Parand, A, Crowder, MW, Vincent, JB & Woski, SA (1999b) Low-molecular-weight chromium-binding substance and biomimetic [Cr 3 O(O 2 CCH 2 CH 3 ) 6 (H 2 O) 3 ] + do not cleave DNA under physiologically-relevant conditions. Polyhedron 18, 26172624.
Stearns, DM (2000) Is chromium a trace essential element?. Biofactors 11, 149162.
Stearns, DM, Silveira, SM, Wolf, KK & Luke, AM (2002) Chromium(III) tris(picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells. Mutation Research 513, 135142.
Stearns, DM, Wise, JP Sr Patierno, SR & Wetterhahn, KE (1995) Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB Journal 9, 16431648.
Striffler, JS, Law, JS, Polansky, MM, Bhathena, SJ & Anderson, RA (1995) Chromium improves insulin response to glucose in rats. Metabolism 44, 13141320.
Striffler, JS, Polansky, MM & Anderson, RA (1999) Overproduction of insulin in the chromium-deficient rat. Metabolism 48, 10631068.
Sugden, KD, Geer, RD & Rogers, SG (1992) Oxygen radical-mediated DNA damage by redox-active Cr(III) complexes. Biochemistry 31, 1162611631.
Sun, Y, Clodfelder, BJ, Shute, AA, Irvin, T & Vincent, JB (2002) The biomimetic [Cr 3 O(O 2 CCH 2 CH 3 ) 6 (H 2 O) 3 ] + decreases plasma insulin, cholesterol and triglycerides in healthy and type II diabetic rats but not type I diabetic rats. Journal of Biological Inorganic Chemistry 7, 852862.
Sun, Y, Mallya, K, Ramirez, J & Vincent, JB (1999) The biomimetic [Cr 3 O(O 2 CCH 2 CH 3 ) 6 (H 2 O) 3 ] + decreases cholesterol and triglycerides in rats: towards chromium-containing therapeutics. Journal of Biological Inorganic Chemistry 4, 838845.
Sun, Y, Ramirez, J, Woski, SA & Vincent, JB (2000) The binding of chromium to low-molecular-weight chromium-binding substance (LMWCr) and the transfer of chromium from transfer and chromium picolinate to LMWCr. Journal of Biological Inorganic Chemistry 5, 129136.
Trumbo, P, Yates, AA, Schlickek, S & Poos, M (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the American Dietetic Association 101, 294301.
Vincent, JB (2000a) The biochemistry of chromium. Journal of Nutrition 130, 715718.
Vincent, JB (2000b) Elucidating a biological role for chromium at a molecular level. Accounts of Chemical Research 33, 503510.
Vincent, JB (2000c) Quest for the molecular mechanism of chromium action and its relationship to diabetes. Nutrition Reviews 58, 6772.
Vincent, JB (2001) The bioinorganic chemistry of chromium(III). Polyhedron 20, 126.
Vincent, JB (2003) The potential value and potential toxicity of chromium picolinate as a nutritional supplement, weight loss agent, and muscle development agent. Sports Medicine 33, 213230.
Wada, O, Wu, GY, Yamamoto, A, Manabe, S & Ono, T (1983) Purification and chromium-excretory function of low-molecular-weight, chromium-binding substances from dog liver. Environmental Research 32, 228239.
Wasser, WG & D'Agati, VD (1997) Chromic renal failure after ingestion of over-the-counter chromium picolinate. Annals of Internal Medicine 126 410.
Yamamoto, A, Ono, T & Wada, O (1987) Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. European Journal of Biochemistry 165, 627631.
Yamamoto, A, Wada, O & Ono, T (1984) Distribution and chromium-binding capacity of a low-molecular-weight, chromium-binding substance in mice. Journal of Inorganic Biochemistry 22, 91102.
Yamamoto, A, Wada, O & Suzuki, H (1988) Purification and properties of biologically active chromium complex from bovine colostrum. Journal of Nutrition 118, 3945.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed