Skip to main content Accessibility help
×
Home

Regulation of lipid metabolism in adipose tissue

  • J. S. Samra (a1)

Abstract

Adipose tissue is a major source of metabolic fuel. This metabolic fuel is stored in the form of triacylglycerol. Lipolysis of triacylglycerol yields non-esterified fatty acids and glycerol. In human subjects in vivo studies of the regulation of lipid metabolism in adipose tissue have been difficult because of the heterogeneous nature of the tissue and lack of a vascular pedicle. In the last decade the methodology of study of adipose tissue has improved with the advent of the anterior abdominal wall adipose tissue preparation technique and microdialysis. These techniques have demonstrated that lipid metabolism in adipose tissue is finely coordinated during feeding and fasting cycles, in order to provide metabolic fuel when required. Lipolysis takes place both in extracellular and intracellular space. The extracellular lipolysis is regulated by lipoprotein lipase and the intracellular lipolysis is regulated by hormone-sensitive lipase. In pathophysiological conditions such as trauma, sepsis and starvation profound changes are induced in the regulation of lipid metabolism. The increased mobilization of lipid fuel is brought about by the differential actions of various counter-regulatory hormones on adipose tissue blood flow and adipose tissue lipolysis through lipoprotein lipase and hormone-sensitive lipase, resulting in increased availability of non-esterified fatty acids as a source of fuel. In recent years, it has been demonstrated that adipose tissue produces various cytokines and these cytokines can have paracrine and endocrine effects. It would appear that adipose tissue has the ability to regulate lipid metabolism locally as well as at distant sites such as liver, muscle and brain. In future, it is likely that the mechanisms that lead to the secondary effects of lipid metabolism on atheroma, immunity and carcinogenesis will be demonstrated.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Regulation of lipid metabolism in adipose tissue
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Regulation of lipid metabolism in adipose tissue
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Regulation of lipid metabolism in adipose tissue
      Available formats
      ×

Copyright

Corresponding author

Corresponding author: Dr J. S. Samra, fax +61 2 9747 2425, email jass420@hotmail.com

References

Hide All
Arner, P, Kriegholm, E, Engfeldt, P & Bolinder, J (1990) Adrenergic regulation of lipolysis in situ at rest and during exercise. Journal of Clinical Investigation 85, 893898.
Baba, H, Zhang, X & Wolfe, R (1995) Glycerol gluconeogenesis in fasting humans. Nutrition 11, 149153.
Boulton, KL, Hudson, DU, Coppack, SW & Frayn, KN (1992) Steroid hormone interconversion in human adipose tissue in vivo. Metabolism 41, 556559.
Bülow, J, Simonsen, L, Wiggins, D, Humphreys, SM, Frayn, KN, Powell, D & Gibbons, GF (1999) Co-ordination of hepatic and adipose tissue lipid metabolism after oral glucose. Journal of Lipid Research 40, 20342043.
Cahill, GF (1970) Starvation in man. New England Journal of Medicine 282, 668675.
Cahill, GF, Herrera, MG, Morgan, AP, Soeldner, JS, Steinke, J, Levy, PL, Reichard, GA & Kipnis, DM (1966) Hormone-fuel interrelationships during fasting. Journal of Clinical Investigation 45, 17511769.
Considine, R, Sinha, M, Heiman, M, Kriauciunas, A, Stephens, T, Nyce, M, Ohannesian, J, Marco, C, McKee, L, Bauer, T & Caro, J (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. New England Journal of Medicine 334, 292295.
Feingold, KR, Staprans, I, Memon, RA, Moser, AH, Shigenaga, JK, Dinarello, CA & Grunfeld, C (1992) Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high doses inhibit clearance. Journal of Lipid Research 33, 17651776.
Fellander, G, Nordenstrom, J, Tjader, I, Bollinder, J & Arner, P (1994) Lipolysis during abdominal surgery. Journal of Clinical Endocrinology and Metabolism 78, 150155.
Fick, A (1872) Über die Messung des Blutquantums in den Herzventrikein (On the measurement of the quantity of blood in the heart ventricles). Verhandlungen – Physikalischen Medizin Gessellschaft 2, 16.
Frayn, KN (1986) Hormonal control of metabolism in trauma and sepsis. Clinical Endocrinology 24, 577599.
Frayn, KN, Coppack, SW, Fielding, BA & Humphreys, SM (1995) Co-ordinated regulation of hormone-sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilisation. Advances in Enzyme Regulation 35, 163178.
Frayn, KN, Coppack, SW, Humphreys, SM & Whyte, PL (1989) Metabolic characteristics of human adipose tissue in vivo. Clinical Science 76, 509516.
Frayn, KN, Khan, K, Coppack, SW & Elia, M (1991) Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clinical Science 80, 471474.
Gelfand, RA, Matthews, DE, Bier, DM & Sherwin, RS (1984) Role of counter-regulatory hormones in the catabolic response to stress. Journal of Clinical Investigation 74, 22382248.
Gordon, RS & Cherkes, A (1956) Unesterified fatty acid in human blood plasma. Journal of Clinical Investigation 35, 206212.
Groop, LC, Bonadonna, RC, Shank, M, Petrides, AS & Defronzo, RA (1991) Role of free fatty acids and insulin in determining free fatty acid and lipid oxidation in man. Journal of Clinical Investigation 87, 8389.
Halliwell, K, Fielding, B, Samra, JS, Humphreys, SM & Frayn, KN (1996) Release of individual fatty acids from human subcutaneous adipose tissue in vivo after an overnight fast. Journal of Lipid Research 37, 18421848.
Hotamisligil, GS, Shargill, NS & Spiegelman, BM (1993) Adipose expression of tumour necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science 259, 8791.
Katz, JR, Mohamed-Ali, V, Wood, PJ, Yudkin, JS & Coppack, SW (1999) An in vivo study of the cortisol-cortisone shuttle in sub- cutaneous abdominal adipose tissue. Clinical Endocrinology 50, 6368.
Klein, S, Sakurai, Y, Romijn, JA & Carroll, RM (1993) Progressive alterations in lipid and glucose metabolism during short-term fasting in young adult men. American Journal of Physiology 265, E801-E806.
Kurpad, A, Khan, K, Calder, AG, Coppack, C, Frayn, K, Macdonald, I & Elia, M (1994) Effect of noradrenaline on glycerol turnover and lipolysis in the whole body and subcutaneous adipose tissue in humans in vivo. Clinical Science 86, 177184.
Lönnroth, P, Jansson, PA & Smith, U (1987) A microdialysis method allowing characterisation of intercellular water space in humans. American Journal of Physiology 253, E228-E231.
Michie, HR, Manogue, KR, Spriggs, DR, Revhaug, A, O'Dwyer, S, Dinarello, CA, Cerami, A, Wolff, SM & Wilmore, DW (1988) Detection of circulating tumour necrosis factor after endotoxin administration. New England Journal Of Medicine 318, 14811486.
Mohamed-Ali, V, Goodrick, S, Katz, DR, Rawesh, A, Miles, JM, Yudkin, JS, Klein, S & Coppack, SW (1997) Subcutaneous adipose release of interleukin-6, but not tumour necrosis factor-alpha, in vivo. Journal of Clinical Endocrinology and Metabolism 82, 41964200.
Owen, OE, Smalley, KJ, D'Alessio, DA, Mozzoli, MA & Dawson, EK (1998) Protein, fat and carbohydrate requirements during starvation: anaplerosis and cataplerosis. American Journal of Clinical Nutrition 68, 1234.
Rouman, RM, Hendriks, T, van der, Ven-Jongekrijg J, Nieuwenhuijzen, GA, Sauerwein, RW, van der, Meer JW & Goris, RJ (1993) Cytokine patterns in patients after major vascular surgery, haemorrhagic shock, and severe blunt trauma: relation with subsequent adult respiratory distress syndrome and multiple organ failure. Annals of Surgery 218, 769776.
Saleh, J, Summers, LK, Cianflone, K, Fielding, BA, Sniderman, AD & Frayn, KN (1998) Co-ordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. Journal of Lipid Research 39, 884891.
Samad, F, Yamamoto, K & Loskutoff, DJ (1996) Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo, induction by tumour necrosis factor-alpha and lipolysaccharide. Journal of Clinical Investigation 97, 3747.
Samra, JS, Clark, ML, Humphreys, SM, Macdonald, IA, Bannister, PA & Frayn, KN (1998a) Effects of physiological hypercortisolemia on regulation of lipolysis in subcutaneous adipose tissue. Journal of Clinical Endocrinology and Metabolism 83, 626631.
Samra, JS, Clark, ML, Humphreys, SM, Macdonald, IA, Bannister, PA, Matthews, DR & Frayn, KN (1999) Suppression of the nocturnal rise in growth hormone reduces subsequent lipolysis in subcutaneous adipose tissue. European Journal of Clinical Investigation 29, 10451052.
Samra, JS, Clark, ML, Humphreys, SM, Macdonald, IA & Frayn, KN (1996a) Regulation of lipid metabolism in adipose tissue during early starvation. American Journal of Physiology 271, E541-E546.
Samra, JS, Clark, ML, Humphreys, SM, Macdonald, IA, Matthews, DR & Frayn, KN (1996b) Effects of morning rise in cortisol concentration on regulation of lipolysis in subcutaneous adipose tissue. American Journal of Physiology 271, E996-E1002.
Samra, JS, Frayn, KN, Giddings, JA, Clark, ML & Macdonald, IA (1995) Modification and validation of a commercially available portable detector for measurement of adipose tissue blood flow. Clinical Physiology 15, 241248.
Samra, JS, Giles, SL, Summers, LK, Evans, RD, Arner, P, Humphreys, SM, Clark, ML & Frayn, KN (1998b) Peripheral fat metabolism during infusion of an exogenous triacylglycerol emulsion. International Journal of Obesity 22, 806812.
Samra, JS, Simpson, EJ, Clark, ML, Forster, CD, Humphreys, SM, Macdonald, IA & Frayn, KN (1996c) Effects of adrenaline infusion on the interstitial environment of subcutaneous adipose tissue as studied by microdialysis. Clinical Science 91, 425430.
Samra, JS, Simpson, EJ, Clark, ML, Forster, CD, Humphreys, SM, Macdonald, IA & Frayn, KN (1996d) Effects of epinephrine infusion on subcutaneous adipose tissue: interactions between blood flow and lipid metabolism. American Journal of Physiology 271, E834-E839.
Samra, JS, Summers, LKM & Frayn, KN (1996e) Sepsis and fat metabolism. British Journal of Surgery 83, 11861196.
Shaw, JHF & Wolfe, RR (1987) Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. Annals of Surgery 205, 368376.
Stoner, HB, Frayn, KN, Barton, RN, Threlfall, CJ & Little, RA (1979) The relationships between plasma substrates and hormones and the severity of injury in 277 recently injured patients. Clinical Science 56, 563573.
Stouthard, JML, Romijn, JA, van der, Poll T, Endert, E, Klein, S, Bakker, PJM, Veenhof, CHN & Sauerwein, HP (1995) Endocrinologic and metabolic effects on interleukin-6 in humans. American Journal of Physiology 268, E813E819.
Summers, LK, Samra, JS & Frayn, KN (1999) Impaired postprandial tissue regulation of blood flow in insulin resistance: a determinant of cardiovascular risk. Atherosclerosis 147, 1115.
Summers, LKM, Arner, P, Ilic, V, Clark, ML, Humphreys, SM & Frayn, KN (1998) Adipose tissue metabolism in the postprandial period: microdialysis and arteriovenous techniques compared. American Journal of Physiology 274, E651-E655.
van der, Poll T, Romijn, JA, Endert, E, Borm, JJ, Buller, HR & Sauerwein, HP (1991) Tumour necrosis factor mimics the metabolic response to acute infection in healthy humans. American Journal of Physiology 261, E457E465.
Wertheimer, E & Shapiro, B (1948) The physiology of adipose tissue. Physiological Reviews 28, 451464.
Wolfe, RR, Herndon, DN, Jahoor, F, Miyoshi, H & Wolfe, M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. New England Journal of Medicine 317, 403408.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed