Skip to main content
×
Home
    • Aa
    • Aa

The role of dietary calcium in bone health

  • Albert Flynn (a1)
Abstract

Approximately 99% of body Ca is found in bone, where it serves a key structural role as a component of hydroxyapatite. Dietary requirements for Ca are determined by the needs for bone development and maintenance, which vary throughout the life stage, with greater needs during the periods of rapid growth in childhood and adolescence, during pregnancy and lactation, and in later life. There is considerable disagreement between expert groups on the daily Ca intake levels that should be recommended, reflecting the uncertainty in the data for establishing Ca requirements. Inadequate dietary Ca in early life impairs bone development, and Ca supplementation of the usual diet for periods of ≤3 years has been shown to enhance bone mineral status in children and adolescents. However, it is unclear whether this benefit is long term, leading to the optimisation of peak bone mass in early adulthood. In later years inadequate dietary Ca accelerates bone loss and may contribute to osteoporosis. Ca supplementation of the usual diet in post-menopausal women and older men has been shown to reduce the rate of loss of bone mineral density at a number of sites over periods of 1–2 years. However, the extent to which this outcome reduces fracture risk needs to be determined. Even allowing for disagreements on recommended intakes, evidence indicates that dietary Ca intake is inadequate for maintenance of bone health in a substantial proportion of some population groups, particularly adolescent girls and older women.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The role of dietary calcium in bone health
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The role of dietary calcium in bone health
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The role of dietary calcium in bone health
      Available formats
      ×
Copyright
Corresponding author
Corresponding author: Professor Albert Flynn, fax +353 21 4270244, a.flynn@ucc.ie
References
Hide All
Andon MB, Lloyd T & Matkovic V (1994) Supplementation trials with calcium citrate malate: Evidence in favour of increasing the calcium RDA during childhood and adolescence. Journal of Nutrition 124, 1412S1417S.
Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G & Rizzoli R (1997) Calcium-enriched foods and bone mass growth in prepubertal girls – a randomized, double-blind, placebo-controlled trial. Journal of Clinical Investigation 99, 12871294.
Bonjour JP, Chevalley T, Ammann P, Slosman D & Rizzoli R (2001) Gain in bone mineral mass in prepubertal girls 3–5 years after discontinuation of calcium supplementation: a follow-up study. Lancet 358, 12081212.
Cadogan J, Eastell R, Jones N & Barker ME (1997) Milk intake and bone mineral acquisition in adolescent girls – randomised, controlled intervention trial. British Medical Journal 315, 12551260.
Carriquiry AL (1999) Assessing the prevalence of nutrient inadequacy. Public Health Nutrition 2, 2333.
Cashman KD & Flynn A (1999) Optimal nutrition: calcium, magnesium and phosphorus. Proceedings of the Nutrition Society 58, 477487.
Cashman KD & Flynn A (2003) Sodium effects on bone and calcium metabolism. In Nutritional Aspects of Bone Health [New S and Bonjour J-P, editors]. London: Royal Society of Chemistry (In the Press)
Chapuy MC, Arlot ME, Delmas PD & Meunier PJ (1994) Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. British Medical Journal 308, 10811082.
Chapuy MC, Pamphile R, Paris E, Kempf C, Schlichting M, Arnaud S, Garnero P & Meunier PJ (2002) Combined calcium and vitamin D 3 supplementation in elderly women: confirmation of reversal of secondary hyperparathyroidism and hip fracture risk: the Decalyos II study. Osteoporosis International 13, 257264.
Chevalley T, Rizzoli R, Nydegger V, Slosman D, Rapin CH, Michel JP, Vasey H & Bonjour JP (1994) Effects of calcium supplements on femoral bone mineral density and vertebral fracture rate in vitamin-D-replete elderly patients. Osteoporosis International 4, 245252.
Cleveland LE, Goldman JD & Borrud LG (1996) Data Tables: Results from USDA's 1994 Continuing Survey of Food Intakes by Individuals and 1994 Diet and Health Knowledge Survey. Beltsville, MD: Agriculture Research Service, US Department of Agriculture.
Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J & Vogt TM (1993) Bone density at various sites for prediction of hip fractures. Lancet 341, 7275.
Dawson-Hughes B (1991) Calcium supplementation and bone loss: a review of controlled clinical trials. American Journal of Clinical Nutrition 54, 274S280S.
Dawson-Hughes B (2003) Interaction of dietary calcium and protein in bone health in humans. Journal of Nutrition 133, 852S854S.
Dawson-Hughes B, Dallal GE, Krall EA, Sadowski L, Sahyoun N & Tannenbaum S (1990) A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. New England Journal of Medicine 323, 878883.
Dawson-Hughes B, Harris SS, Krall EA & Dallal GE (1997) Effect of calcium and vitamin D supplementation on bone, density in men and women 65 years of age or older. New England Journal of Medicine 337, 670676.
De Laet CE, Van Hout BA, Burger H, Hofman A & Pols HA (1997) Bone density and risk of hip fracture in men and women: cross-sectional analysis. British Medical Journal 26, 221225.
Department of Health (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. Report on Health and Social Subjects no. 41 London: H.M. Stationery Office.
Department of Health (1998) Nutrition and Bone Health with Particular Reference to Calcium and Vitamin D.Report on Health and Social Subjects no. 49 London: The Stationery Office.
Dibba B, Prentice A, Ceesay M, Mendy M, Darboe S, Stirling DM, Cole TJ & Poskitt EM (2002) Bone mineral contents and plasma osteocalcin concentrations of Gambian children 12 and 24 mo after the withdrawal of a calcium supplement. American Journal of Clinical Nutrition 76, 681686.
Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ & Poskitt EME (2000) Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low-calcium diet. American Journal of Clinical Nutrition 71, 544549.
Eastell R, Robins SP, Colwell T, Assiri AM, Riggs BL & Russell RG (1993) Evaluation of bone turnover in type I osteoporosis using biochemical markers specific for both bone formation and bone resorption. Osteoporosis International 3, 255260.
Elders PJ, Netelenbos JC, Lips P, Van Ginkel FC, Khoe E, Leeuwenkamp OR, Hackeng WH & van der Stelt PF (1991) Calcium supplementation reduces vertebral bone loss in perimenopausal women: a controlled trial in 248 women between 46 and 55 years of age. Journal of Clinical Endocrinology and Metabolism 73, 533540.
Fehily AM, Coles RJ, Evans WD & Elwood PC (1992) Factors affecting bone density in young adults. American Journal of Clinical Nutrition 56, 579586.
Flynn A & Cashman KD (1999) Calcium. In The Mineral Fortification of Foods, pp. 1853 [Hurrell R, editor]. Leatherhead, Surrey: Leatherhead Food Research Association.
Frost HM (1973) The origin and nature of transients in human bone remodeling dynamics. In Clinical Aspects of Metabolic Bone Disease, pp. 124137 [Frame B, Parfitt AM, Duncan H, editors]. Amsterdam, The Netherlands: Excerpta Medica.
Garnero P, Hauser E, Chapuy MC, Marcelli C, Grandjean H, Muller C, Cormier C, Breard G, Meunier PJ & Delmas PD (1996) Markers of bone turnover predict hip fractures in elderly women. The EPIDOS prospective study. Journal of Bone and Mineral Research 11, 15311538.
Goulding A, Jones IE, Taylor RW, Williams SM & Manning PJ (2001) Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. Journal of Pediatrics 139, 509515.
Gregory J, Lowe S, Bates CJ, Prentice A, Jackson LV, Smitherts G, Wenlock R & Farron M (2000) National Diet and Nutrition Survey: Young People Aged 4–18 years. London: The Stationery Office.
Hannon E, Kiely M, Harrington KE, Robson P, Strain JJ & Flynn A (2001) The North/South Ireland Food Consumption Survey: Mineral intakes in 18–64 year old adults. Public Health Nutrition 4, 10811088.
Hansen M, Overgaard K, Riis B & Christiansen C (1991) Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. British Medical Journal 303, 961964.
Heaney RP (1997) The roles of calcium and vitamin D in skeletal health: an evolutionary perspective. Food, Nutrition and Agriculture no. 20, pp. 412. Rome: FAO.
Heikinheimo RJ, Inkovaara JA, Harju EJ, Haavisto MV, Kaarela RH, Kataja JM, Kokko AM, Kolho LA & Rajala SA (1992) Annual injection of vitamin D and fractures of aged bones. Calcified Tissue International 51, 105110.
Institute of Medicine (1997) Calcium. Dietary Reference Intakes. Calcium, Magnesium, Phosphorus, Vitamin D, and Fluoride, pp. 4/14/57. Washington, DC: National Academy Press.
Johnston CC Jr, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC & Peacock M (1992) Calcium supplementation and increases in bone mineral density in children. New England Journal of Medicine 327, 8287.
Kanis JA (1991) Calcium requirements for optimal skeletal health in women. Calcified Tissue International 49, S33S41.
Kanis JA (1999) The use of calcium in the management of osteoporosis. Bone 24, 279290.
Lee WTK, Leung SSF, Cheng JCY, Wang SH, Xu YC & Zeng W-P (1995) Effects of calcium supplementation and subsequent withdrawal on bone acquisition of Chinese children. Proceedings of the 7th Asian Congress of Nutrition. F-61–03, p. 343. Beijing, China: Chinese Nutrition Society.
Lee WTK, Leung SSF, Leung DMY & Cheng JCY (1996) A follow-up study on the effects of calcium-supplement with-drawal and puberty on bone acquisition of children. American Journal of Clinical Nutrition 64, 7177.
Lee WTK, Leung SSF, Leung DMY, Wang SH, Xu YC, Zeng WP & Cheng JCY (1997) Bone mineral acquisition in low calcium intake children following the withdrawal of calcium supplement. Acta Paediatrica 86, 570576.
Lee WTK, Leung SSF, Wang SH, Xu YC, Zeng W-P, Lau J, Oppenheimer SJ & Cheng JCY (1994) Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. American Journal of Clinical Nutrition 60, 744750.
Lips P, Graafmans WC, Ooms ME, Bezemer PD & Bouter LM (1996) Vitamin D supplementation and fracture incidence in elderly persons – a randomized, placebo-controlled clinical trial. Annals of Internal Medicine 124, 400406.
Lloyd T, Andon MB, Rollings N, Martel JK, Landis JR, Demers LM, Eggli DF, Kieselhorst K & Kulin HE (1993) Calcium supplementation and bone mineral density in adolescent girls. Journal of the American Medical Association 270, 841844.
Lloyd T, Martel JK, Rollings N, Andon MB, Kulin K, Demers LM, Eggli D, Kieselhorst K & Chinchili VML (1996) The effect of calcium supplementation and Tanner stage on bone density, content and area in teenage women. Osteoporosis International 6, 276283.
Marshall D, Johnell O & Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. British Medical Journal 312, 12541259.
Melton LJ, Chrischilles EA, Cooper C, Lane AW & Riggs BL (1992) How many women have osteoporosis? Journal of Bone and Mineral Research 7, 10051010.
National Research Council (1989) Calcium. Recommended Dietary Allowances, 10th ed., pp. 174184. Washington, DC: National Academy Press.
Nelson ME, Fisher EC, Dilmanian FA, Dallal GE & Evans WJ (1991) A 1-y walking program and increased dietary calcium in postmenopausal women: effects on bone. American Journal of Clinical Nutrition 53, 13041311.
Nieves JW, Komar L, Cosman F & Lindsay R (1998) Calcium potentiates the effect of estrogen and calcitonin on bone mass – review and analysis. American Journal of Clinical Nutrition 67, 1824.
Nordin BEC (1997) Calcium and osteoporosis. Nutrition 13, 664686.
Nowson CA, Green RM, Hopper JL, Sherwin AJ, Young D, Kaymakci B, Guest CS, Smid M, Larkins RG & Wark JD (1997) A co-twin study of the effect of calcium supplementation on bone density during adolescence. Osteoporosis International 7, 219225.
Oleson CV, Busconi BD & Baran DT (2002) Bone density in competitive figure skaters. Archives of Physical and Medical Rehabilitation 83, 122128.
Parfitt AM (1984) Age-related structural changes intrabecular and cortical bone: Cellular mechanisms and biomechanical consequences. Calcified Tissue International 36, S123S128.
Prentice A (1995) Calcium requirements in children. Nutrition Reviews 53, 3740.
Prentice A (1997) Is nutrition important in osteoporosis?. Proceedings of the Nutrition Society 56, 357367.
Prentice A (2001) The relative contribution of diet and genotype to bone development. Proceedings of the Nutrition Society 60, 18.
Prentice A & Bates CJ (1993) An appraisal of the adequacy of dietary mineral intakes in developing countries for bone growth and development in children. Nutrition Research Reviews 6, 5159.
Prentice A, Bonjour J-P, Branca F, Cooper C, Flynn A, Garabedian M, Müller D, Pannemans D & Weber P (2003) Process for the assessment of scientific support for claims on foods (PASS-CLAIM): Bone health and osteoporosis. European Journal of Nutrition 42, Suppl. 1 128149.
Prince R, Devine A, Dick I, Criddle A, Kerr D, Kent N, Price R & Randell A (1995) The effects of calcium supplementation (milk or tablets) and exercise on bone density in postmenopausal women. Journal of Bone and Mineral Research 10, 10681075.
Recker RR, Hinders S, Davies KM, Heaney RP, Stegman MR, Lappe JM & Kimmel DB (1996) Correcting calcium nutritional deficiency prevents spine fractures in elderly women. Journal of Bone and Mineral Research 11, 19611966.
Reid IR, Ames RW, Evans MC, Gamble GD & Sharpe SJ (1993) Effect of calcium supplementation on bone loss in post-menopausal women. New England Journal of Medicine 328, 460464.
Reid IR, Ames RW, Evans MC, Gamble GD & Sharpe SJ (1995) Long-term effects of calcium supplementation on bone loss and fractures in postmenopausal women – a randomised controlled trial. American Journal of Medicine 98, 331335.
Riggs BL, Melton LJ III & O'Fallon WM (1996) Drug therapy for vertebral fractures in osteoporosis: Evidence that decreases in bone turnover and increases in bone mass both determine anti-fracture efficacy. Bone 18, 197S201S.
Riis BJ (1995) The role of bone loss. American Journal of Medicine 98, Suppl. 2A, 2932.
Scariano JK, Vanderjagt DJ, Thacher T, Isichei CO, Hollis BW & Glew RH (1998) Calcium supplements increase the serum levels of crosslinked N-telopeptides of bone collagen and parathyroid hormone in rachitic Nigerian children. Clinical Biochemistry 31, 421427.
Shortt C & Flynn A (1990) Sodium–calcium inter-relationships with specific reference to osteoporosis. Nutrition Research Reviews 3, 101115.
Slemenda CW, Peacock M, Hui S, Zhou L & Johnston CC (1997) Reduced rates of skeletal remodeling are associated with increased peak bone mineral density during the development of peak skeletal mass. Journal of Bone and Mineral Research 12, 676682.
Specker BL, Beck A, Kalkwarf H & Ho M (1997) Randomized trial of varying mineral intake on total body bone mineral accretion during the first year of life. Pediatrics 99, E121E127.
Stear SJ, Prentice A, Jones SC & Cole TJ (2003) Effect of a calcium and exercise intervention on the bone mineral status of 16–18-y-old adolescent girls. American Journal of Clinical Nutrition 77, 985992.
World Health Organization (1994) Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis. Technical Report Series no. 843. Geneva: WHO.
World Health Organization (1999) Interim report and recommendations of the World Health Organization Task Force for Osteoporosis. Osteoporosis International 10, 259264.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 4
Total number of PDF views: 937 *
Loading metrics...

Abstract views

Total abstract views: 1099 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.