Skip to main content Accessibility help
×
×
Home

Session 2: Personalised nutrition Epigenomics: a basis for understanding individual differences?: Symposium on ‘The challenge of translating nutrition research into public health nutrition’

  • John C. Mathers (a1)

Abstract

Epigenetics encompasses changes to marks on the genome that are copied from one cell generation to the next, which may alter gene expression but which do not involve changes in the primary DNA sequence. These marks include DNA methylation (methylation of cytosines within CpG dinucleotides) and post-translational modifications (acetylation, methylation, phosphorylation and ubiquitination) of the histone tails protruding from nucleosome cores. The sum of genome-wide epigenetic patterns is known as the epigenome. It is hypothesised that altered epigenetic marking is a means through which evidence of environmental exposures (including nutritional status and dietary exposure) is received and recorded by the genome. At least some of these epigenetic marks are remembered through multiple cell generations and their effects may be revealed in altered gene expression and cell function. Altered epigenetic marking allows plasticity of phenotype in a fixed genotype. Despite their identical genotypes, monozygotic twins show increasing epigenetic diversity with age and with divergent lifestyles. Differences in epigenetic markings may explain some inter-individual variation in disease risk and in response to nutritional interventions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Session 2: Personalised nutrition Epigenomics: a basis for understanding individual differences?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Session 2: Personalised nutrition Epigenomics: a basis for understanding individual differences?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Session 2: Personalised nutrition Epigenomics: a basis for understanding individual differences?
      Available formats
      ×

Copyright

Corresponding author

Corresponding author: Professor John C. Mathers, fax +44 191 2228943, email john.mathers@ncl.ac.uk

References

Hide All
1. Gluckman, PD & Hanson, MA (2004) Living with the past: Evolution, development, and patterns of disease. Science 305, 17331736.
2. Mathers, JC (2002) Pulses and carcinogenesis: Potential for the prevention of colon, breast and other cancers. Br J Nutr 88, Suppl. 3, S273S279.
3. Bernstein, BE, Meissner, A & Lander, ES (2007) The mammalian epigenome. Cell 128, 669681.
4. Kouzarides, T (2007) Chromatin modifications and their function. Cell 128, 693705.
5. Jenuwein, T & Allis, CD (2001) Translating the histone code. Science 293, 10741080.
6. Eckhardt, F, Lewin, CD, Cortese, R et al. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38, 13781385.
7. Bastow, R, Mylne, JS, Lister, C, Lippman, Z, Martienssen, RA & Dean, C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164167.
8. Kucharski, R, Maleszka, J, Foret, S & Maleszka, R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 18271830.
9. Zoghbi, H & Beaudet, A (2007) Epigenetics and human disease. In Epigenetics, pp. 435456 [Allis, C, Jenuwein, T and Reinberg, D editors]. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
10. Feinberg, AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433440.
11. Mathers, JC & McKay, JA (2008) Epigenetics – Potential contribution to fetal programming. Adv Exp Med Biol (In the Press).
12. Hatchwell, E & JM, Greally (2007) The potential role of epigenomic dysregulation in complex human disease. Trends Genet 23, 588595.
13. Morgan, HD, Sutherland, HGE, Martin, DIK & Whitelaw, E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23, 314318.
14. Waterland, RA & Jirtle, RL (2003) Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23, 52935300.
15. Dolinoy, DC, Weidman, JR, Waterland, RA & Jirtle, RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114, 567572.
16. Sinclair, KD, Allegrucci, C, Singh, R et al. (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci USA 104, 1935119356.
17. Liu, D, Diorio, J, Tannenbaum, B, Caldji, C, Francis, D, Freedman, A, Sharma, S, Pearson, D, Plotsky, PM & Meaney, MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277, 16591662.
18. Weaver, ICG, Cervoni, N, Champagne, FA, D'Alessio, AC, Sharma, S, Seckl, JR, Dymov, S, Szyf, M & Meaney, MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7, 847854.
19. Szyf, M, I, Weaver & M, Meaney (2007) Maternal care, the epigenome and phenotypic differences in behavior. Reprod Toxicol 24, 919.
20. Fraga, MF, E, Ballestar, Paz, MF et al. (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102, 1060410609.
21. Martin, GM (2005) Epigenetic drift in aging identical twins. Proc Natl Acad Sci USA 102, 1041310414.
22. Rakyan, VK, Hildmann, T, Novik, KL et al. (2004) DNA methylation profiling of the human major histocompatibility complex: A pilot study for the Human Epigenome Project. PLoS Biol 2, e405.
23. Heijmans, BT, Kremer, D, Tobi, EW, Boomsma, DI & Slagboom, PE (2007) Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 16, 547554.
24. Bestor, TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9, 23952402.
25. Cebrian, A, Pharoah, PD, Ahmed, S et al. (2006) Genetic variants in epigenetic genes and breast cancer risk. Carcinogenesis 27, 16611669.
26. National Institutes of Health (2008) NIH roadmap for medical research. http://nihroadmap.nih.gov/epigenomics/
27. Brena, RM, Huang, THM & Plass, C (2006) Toward a human epigenome. Nat Genet 38, 13591360.
28. Korshunova, Y, Maloney, RK, Lakey, N et al. (2008) Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res 18, 1929.
29. Beck, S & Rakyan, VK (2008) The methylome: approaches for global DNA methylation profiling. Trends Genet 24, 231237.
30. Jirtle, RL & Skinner, MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8, 253262.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed