Skip to main content
×
Home
    • Aa
    • Aa

Sleep, circadian rhythm and body weight: parallel developments

  • Margriet S. Westerterp-Plantenga (a1)
Abstract

Circadian alignment is crucial for body-weight management, and for metabolic health. In this context, circadian alignment consists of alignment of sleep, meal patterns and physical activity. During puberty a significant reduction in sleep duration occurs, and pubertal status is inversely associated with sleep duration. A consistent inverse association between habitual sleep duration and body-weight development occurs, independent of possible confounders. Research on misalignment reveals that circadian misalignment affects sleep-architecture and subsequently disturbs glucose–insulin metabolism, substrate oxidation, leptin- and ghrelin concentrations, appetite, food reward, hypothalamic–pituitary–adrenal-axis activity and gut-peptide concentrations enhancing positive energy balance and metabolic disturbance. Not only aligning meals and sleep in a circadian way is crucial, also regular physical activity during the day strongly promotes the stability and amplitude of circadian rhythm, and thus may serve as an instrument to restore poor circadian rhythms. Endogenicity may play a role in interaction of these environmental variables with a genetic predisposition. In conclusion, notwithstanding the separate favourable effects of sufficient daily physical activity, regular meal patterns, sufficient sleep duration and quality sleep on energy balance, the overall effect of the amplitude and stability of the circadian rhythm, perhaps including genetic predisposition, may integrate the separate effects in an additive way.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sleep, circadian rhythm and body weight: parallel developments
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Sleep, circadian rhythm and body weight: parallel developments
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Sleep, circadian rhythm and body weight: parallel developments
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Professor M. S. Westerterp-Plantenga, email m.westerterp@maastrichtuniversity.nl
References
Hide All
1. A Adamantidis & L de Lecea (2008) Sleep and metabolism: shared circuits, new connections. Trends Endocrinol Metab 19, 362370.

2. O Froy (2007) The relationship between nutrition and circadian rhythms in mammals. Front Neuroendocrinol 28, 6171.

3. R Wolk & VK Somers (2007) Sleep and the metabolic syndrome. Exp Physiol 92, 6778.

4. DA Bechtold (2008) Energy-responsive timekeeping. J Genet 87, 447458.

5. AD Laposky , J Bass , A Kohsaka (2008) Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett 582, 142151.

6. M Garaulet , JM Ordovas & JA Madrid (2010) The chronobiology, etiology and pathophysiology of obesity. Int J Obes 34, 16671683.

7. A Kohsaka , AD Laposky , KM Ramsey (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6, 414421.

9. J Mendoza (2007) Circadian clocks: setting time by food. J Neuroendocrinol 19, 127137.

10. Y Esquirol , V Bongard , L Mabile (2009) Shift work and metabolic syndrome: respective impacts of job strain, physical activity, and dietary rhythms. Chronobiol Int 26, 544559.

11. FA Scheer , MF Hilton , CS Mantzoros (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106, 44534458.

12. J Mendoza , P Pevet & E Challet (2008) High-fat feeding alters the clock synchronization to light. J Physiol 586, 59015910.

13. DM Arble , J Bass , AD Laposky (2009) Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 17, 21002102.

14. P Kok , F Roelfsema , M Frolich (2008) Short-term treatment with bromocriptine improves impaired circadian growth hormone secretion in obese premenopausal women. J Clin Endocrinol Metab 93, 34553461.

15. U Schibler , J Ripperger & SA Brown (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18, 250260.

16. T Hirota & Y Fukada (2004) Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog Sci 21, 359368.

17. A Knutsson & H Boggild (2010) Gastrointestinal disorders among shift workers. Scand J Work Environ Health 36, 8595.

18. WA Hoogerwerf (2009) Role of biological rhythms in gastrointestinal health and disease. Rev Endocr Metab Disord 10, 293300.

19. D Szosland (2010) Shift work and metabolic syndrome, diabetes mellitus and ischaemic heart disease. Int J Occup Med Environ Health 23, 287291.

20. F Rutters , WJ Gerver , AG Nieuwenhuizen (2010) Sleep duration and body-weight development during puberty in a Dutch children cohort. Int J Obes 34, 15081514.

21. KL Knutson (2005) The association between pubertal status and sleep duration and quality among a nationally representative sample of U. S. adolescents. Am J Hum Biol 17, 418424.

22. B Thorleifsdottir , JK Bjornsson , B Benediktsdottir (2002) Sleep and sleep habits from childhood to young adulthood over a 10-year period. J Psychosom Res 53, 529537.

23. JC Lumeng , D Somashekar , D Appugliese (2007) Shorter sleep duration is associated with increased risk for being overweight at ages 9 to 12 years. Pediatrics 120, 10201029.

24. SA DiVall & S Radovick (2009) Endocrinology of female puberty. Curr Opin Endocrinol Diab Obes 16, 14.

25. K Lewis & PA Lee (2009) Endocrinology of male puberty. Curr Opin Endocrinol Diab Obes 16, 59.

26. TB Vanitallie (2006) Sleep and energy balance: interactive homeostatic systems. Metabolism 55, S30S35.

27. O Mesarwi , J Polak , J Jun (2013) Sleep disorders and the development of insulin resistance and obesity. Endocrinol Metab Clin North Am 42, 617634.

29. K Spiegel , R Leproult & E Van Cauter (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354, 14351439.

30. E Van Cauter (2011) Sleep disturbances and insulin resistance. Diab Med 28, 14551462.

31. E de Jong , T Stocks , TL Visscher (2012) Association between sleep duration and overweight: the importance of parenting. Int J Obes 36, 12781284.

33. S Javaheri , A Storfer-Isser , CL Rosen (2011) Association of short and long sleep durations with insulin sensitivity in adolescents. J Pediatr 158, 617623.

36. RA Hicks , S McTighe & M Juarez (1986) Sleep duration and eating behaviors of college students. Percept Mot Skills 62, 2526.

37. PS Hogenkamp , E Nilsson , VC Nilsson (2013) Acute sleep deprivation increases portion size and affects food choice in young men. Psychoneuroendocrinology 38, 16681674.

39. TT Wells & CD Cruess (2006) Effect of partial sleep deprivation on food consumption and food choice. Psychol Health 21, 7986.

42. HK Gonnissen , T Hulshof & MS Westerterp-Plantenga (2013) Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obes Rev 14, 405416.

44. HK Gonnissen , C Mazuy , F Rutters (2013) Sleep architecture when sleeping at an unusual circadian time and associations with insulin sensitivity. PLoS ONE 8, e72877.

45. HK Gonnissen , F Rutters , C Mazuy (2012) Effect of a phase advance and phase delay of the 24-h cycle on energy metabolism, appetite, and related hormones. Am J Clin Nutr 96, 689697.

46. AV Nedeltcheva , JM Kilkus , J Imperial (2009) Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr 89, 126133.

47. A Bosy-Westphal , S Hinrichs , K Jauch-Chara (2008) Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women. Obes Facts 1, 266273.

49. MP St-Onge , AL Roberts , J Chen (2011) Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr 94, 410416.

50. AV Nedeltcheva , JM Kilkus , J Imperial (2010) Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med 153, 435441.

51. S Taheri , L Lin , D Austin (2004) Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med 1, e62.

53. A Omisade , OM Buxton & B Rusak (2010) Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiol Behav 99, 651656.

54. SM Schmid , M Hallschmid , K Jauch-Chara (2008) A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res 17, 331334.

55. SM Schmid , M Hallschmid , K Jauch-Chara (2009) Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr 90, 14761482.

56. L Morselli , R Leproult , M Balbo (2010) Role of sleep duration in the regulation of glucose metabolism and appetite. Best Pract Res 24, 687702.

57. R Hursel , F Rutters , HK Gonnissen (2011) Effects of sleep fragmentation in healthy men on energy expenditure, substrate oxidation, physical activity, and exhaustion measured over 48 h in a respiratory chamber. Am J Clin Nutr 94, 804808.

58. SP Verhoef , SG Camps , HK Gonnissen (2013) Concomitant changes in sleep duration and body weight and body composition during weight loss and 3-mo weight maintenance. Am J Clin Nutr 98, 2531.

59. JP Chaput , JP Despres , C Bouchard (2011) Longer sleep duration associates with lower adiposity gain in adult short sleepers. Int J Obes (Lond) 36, 752756.

60. JP Chaput & A Tremblay (2012) Sleeping habits predict the magnitude of fat loss in adults exposed to moderate caloric restriction. Obes Facts 5, 561566.

61. MA Carskadon & WC Dement (2011) Monitoring and staging human sleep. In Principles and Practice of Sleep Medicine, pp. 1626 [ E Roth & WC Dement , editors]. St. Louis: Elsevier Saunders.

62. ML Lee , BE Swanson & HO de la Iglesia (2009) Circadian timing of REM sleep is coupled to an oscillator within the dorsomedial suprachiasmatic nucleus. Curr Biol 19, 848852.

63. P Monteleone & M Maj (2008) The circadian basis of mood disorders: recent developments and treatment implications. Eur Neuropsychopharmacol 18, 701711.

64. E Van Cauter , R Leproult & L Plat (2000) Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 284, 861868.

65. J Emens , A Lewy , JM Kinzie (2009) Circadian misalignment in major depressive disorder. Psychiatry Res 168, 259261.

66. MJ Peterson & RM Benca (2006) Sleep in mood disorders. Psychiatr Clin North Am 29, 10091032.

67. T Akerstedt & M Gillberg (1986) A dose-response study of sleep loss and spontaneous sleep termination. Psychophysiology 23, 293297.

69. AJ Tilley & RT Wilkinson (1984) The effects of a restricted sleep regime on the composition of sleep and on performance. Psychophysiology 21, 406412.

70. EM Elmenhorst , D Elmenhorst & N Luks (2008) Partial sleep deprivation: impact on the architecture and quality of sleep. Sleep Med 9, 840850.

73. KL Knutson , E Van Cauter , P Zee (2011) Cross-sectional associations between measures of sleep and markers of glucose metabolism among subjects with and without diabetes: the Coronary Artery Risk Development in Young Adults (CARDIA) Sleep Study. Diab Care 34, 11711176.

75. D Koren , LE Levitt Katz , PC Brar (2011) Sleep architecture and glucose and insulin homeostasis in obese adolescents. Diab Care 34, 24422447.

76. W Huang , KM Ramsey & B Marcheva (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121, 21332141.

78. A Kalsbeek & JH Strubbe (1999) Circadian control of insulin secretion is independent of the temporal distribution of feeding. Physiol Behav 63, 553558.

79. L Morgan , S Hampton , M Gibbs (2003) Circadian aspects of postprandial metabolism. Chronobiol Int 20, 795808.

80. DP van Aggel-Leijssen , MA van Baak , R Tenenbaum (1999) Regulation of average 24 h human plasma leptin level; the influence of exercise and physiological changes in energy balance. Int J Obes Relat Metab Disord 23, 151158.

81. DA Schoeller , LK Cella , MK Sinha (1997) Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invest 100, 18821887.

82. V Lecoultre , E Ravussin & LM Redman (2011) The fall in leptin concentration is a major determinant of the metabolic adaptation induced by caloric restriction independently of the changes in leptin circadian rhythms. J Clin Endocrinol Metab 96, E1512E1516.

83. ML Wong , J Licinio , BO Yildiz (2004) Simultaneous and continuous 24-hour plasma and cerebrospinal fluid leptin measurements: dissociation of concentrations in central and peripheral compartments. J Clin Endocrinol Metab 89, 258265.

84. S Cinti , RD Matteis , C Pico (2000) Secretory granules of endocrine and chief cells of human stomach mucosa contain leptin. Int J Obes Relat Metab Disord 24, 789793.

86. S Cinti , R de Matteis , E Ceresi (2001) Leptin in the human stomach. Gut 49, 155.

87. M Kojima & K Kangawa (2002) Ghrelin, an orexigenic signaling molecule from the gastrointestinal tract. Curr Opin Pharmacol 2, 665668.

88. MA Cowley , RG Smith , S Diano (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649661.

89. HY Chen , ME Trumbauer , AS Chen (2004) Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 145, 26072612.

91. CX Yi , E Challet , P Pevet (2008) A circulating ghrelin mimetic attenuates light-induced phase delay of mice and light-induced Fos expression in the suprachiasmatic nucleus of rats. Eur J Neurosci 27, 19651972.

92. PC Yannielli , PC Molyneux , ME Harrington (2007) Ghrelin effects on the circadian system of mice. J Neurosci 27, 28902895.

93. DE Cummings , JQ Purnell , RS Frayo (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 17141719.

95. ML Dos Santos , FF Aragon , CR Padovani (2006) Daytime variations in glucose tolerance in people with impaired glucose tolerance. Diab Res Clin Pract 74, 257262.

96. EC Fletcher (1997) Sympathetic activity and blood pressure in the sleep apnea syndrome. Respiration 64, Suppl. 1, 2228.

97. DC Ribeiro , SM Hampton , L Morgan (1998) Altered postprandial hormone and metabolic responses in a simulated shift work environment. J Endocrinol 158, 305310.

98. AS DeSantis , AV DiezRoux , A Hajat (2012) Associations of salivary cortisol levels with inflammatory markers: the Multi-Ethnic Study of Atherosclerosis. Psychoneuroendocrinology 37, 10091018.

101. HR Farshchi , MA Taylor & IA Macdonald (2004) Regular meal frequency creates more appropriate insulin sensitivity and lipid profiles compared with irregular meal frequency in healthy lean women. Eur J Clin Nutr 58, 10711077.

102. HR Farshchi , MA Taylor & IA Macdonald (2004) Decreased thermic effect of food after an irregular compared with a regular meal pattern in healthy lean women. Int J Obes Relat Metab Disord 28, 653660.

104. DJ Jenkins & AL Jenkins (1995) Nutrition principles and diabetes. A role for “lente carbohydrate”? Diab Care 18, 14911498.

105. DJ Jenkins , TM Wolever , V Vuksan (1989) Nibbling versus gorging: metabolic advantages of increased meal frequency. N Engl J Med 321, 929934.

106. DJ Jenkins , TM Wolever , A Ocana , (1990) Metabolic effects of reducing rate of glucose ingestion by single bolus versus continuous sipping. Diabetes 39, 775781.

107. TM Wolever (1990) Metabolic effects of continuous feeding. Metabolism 39, 947951.

108. J Bertelsen , C Christiansen , C Thomsen (1993) Effect of meal frequency on blood glucose, insulin, and free fatty acids in NIDDM subjects. Diab Care 16, 47.

109. C Thomsen , C Christiansen , OW Rasmussen (1997) Comparison of the effects of two weeks’ intervention with different meal frequencies on glucose metabolism, insulin sensitivity and lipid levels in non-insulin-dependent diabetic patients. Ann Nutr Metab 41, 173180.

114. MS Westerterp-Plantenga , EM Kovacs & KJ Melanson (2002) Habitual meal frequency and energy intake regulation in partially temporally isolated men. Int J Obes Relat Metab Disord 26, 102110.

116. MS Westerterp-Plantenga , A Nieuwenhuizen , D Tome (2009) Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr 29, 2141.

121. D Chapelot , C Marmonier , R Aubert (2006) Consequence of omitting or adding a meal in man on body composition, food intake, and metabolism. Obesity 14, 215227.

122. AJ Smeets & MS Westerterp-Plantenga (2008) Acute effects on metabolism and appetite profile of one meal difference in the lower range of meal frequency. Br J Nutr 99, 13161321.

123. HR Tranel , EA Schroder , J England (2015) Physical activity, and not fat mass is a primary predictor of circadian parameters in young men. Chronobiol Int 32, 832841.

124. J Lopez-Minguez , JR Ordoñana , JF Sánchez-Romera (2015) Circadian system heritability as assessed by wrist temperature: a twin study. Chronobiol Int 32, 7180.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the Nutrition Society
  • ISSN: 0029-6651
  • EISSN: 1475-2719
  • URL: /core/journals/proceedings-of-the-nutrition-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 83
Total number of PDF views: 347 *
Loading metrics...

Abstract views

Total abstract views: 989 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.