Skip to main content Accessibility help
×
Home

Visceral obesity, metabolic syndrome, insulin resistance and cancer

  • Suzanne L. Doyle (a1), Claire L. Donohoe (a1), Joanne Lysaght (a1) and John V. Reynolds (a1)

Abstract

This paper presents emerging evidence linking visceral adiposity and the metabolic syndrome (MetSyn) with carcinogenesis. The link between obesity and cancer has been clearly identified in a multitude of robust epidemiological studies. Research is now focusing on the role of visceral adipose tissue in carcinogenesis; as it is recognised as an important metabolic tissue that secretes factors that systemically alter the immunological, metabolic and endocrine milieu. Excess visceral adipose tissue gives rise to a state of chronic systemic inflammation with associated insulin resistance and dysmetabolism, collectively known as the MetSyn. Prospective cohort studies have shown associations between visceral adiposity, the MetSyn and increased risk of breast cancer, colorectal cancer and oesophageal adenocarcinoma. Furthermore, visceral adiposity and the MetSyn have been associated with increased tumour progression and reduced survival. The mechanisms by which visceral adiposity and the MetSyn are thought to promote tumorigenesis are manifold. These include alterations in adipokine secretion and cell signalling pathways. In addition, hyperinsulinaemia, subsequent insulin resistance and stimulation of the insulin-like growth factor-1 axis have all been linked with visceral adiposity and promote tumour progression. Furthermore, the abundance of inflammatory cells in visceral adipose tissue, including macrophages and T-cells, create systemic inflammation and a pro-tumorigenic environment. It is clear from current research that excess visceral adiposity and associated dysmetabolism play a central role in the pathogenesis of certain cancer types. Further research is required to elucidate the exact mechanisms at play and identify potential targets for intervention.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Visceral obesity, metabolic syndrome, insulin resistance and cancer
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Visceral obesity, metabolic syndrome, insulin resistance and cancer
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Visceral obesity, metabolic syndrome, insulin resistance and cancer
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor John V. Reynolds, fax +353 1 4546534, email reynoljv@tcd.ie

References

Hide All
1. World Health Organisation (2000) Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. World Health Organisation Technical Report Series 894, pp. 1253. Geneva: WHO.
2. Ogden, CL, Carroll, MD, Curtin, LR et al. (2006) Prevalence of overweight and obesity in the united states, 1999–2004. JAMA 295, 15491555.
3. National Health Service Information Centre (2009) Health survey for England–2008: Physical activity and fitness. http://www.ic.nhs.uk/statistics-and-data-collections/health-and-lifestyles-related-surveys/health-survey-for-england/health-survey-for-england-2008-physical-activity-and-fitness (accessed August 2011).
4. McCarthy, SN, Gibney, MJ & Flynn, A (2002) Overweight, obesity and physical activity levels in Irish adults: Evidence from the North/South Ireland food consumption survey. Proc Nutr Soc 61, 37.
5. Jackson-Leach, R & Lobstein, T (2006) Estimated burden of paediatric obesity and co-morbidities in Europe. Part 1. The increase in the prevalence of child obesity in Europe is itself increasing. Int J Pediatr Obes 1, 2632.
6. Serdula, MK, Ivery, D, Coates, RJ et al. (1993) Do obese children become obese adults? A review of the literature . Prey Med 22, 167177.
7. Klein, S, Warden, T & Superman, HJ (2002) AGA technical review on obesity. Gastroenterology 123, 882932.
8. René an, AG, Tyson, M, Egger, M et al. (2008) Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 371, 569578.
9. World Cancer Research Fund, American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity and the Prevention of Cancer: Global Perspective. Washington, DC: American Institute for Cancer Research.
10. Calle, EE, Rodriguez, C, Walker-Thurmond, K et al. (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. Adults. N Engl J Med 348, 16251638.
11. Dirx, MJM, Zeegers, MPA, Dagnelie, PC et al. (2003) Energy restriction and the risk of spontaneous mammary tumors in mice: A meta-analysis. Int J Cancer 106, 766770.
12. Mai, V, Colbert, LH, Berrigan, D et al. (2003) Calorie restriction and diet composition modulate spontaneous intestinal tumorigenesis in Apc(Min) mice through different mechanisms. Cancer Res 63, 17521755.
13. Sjostrom, L, Gummesson, A, Sjostrom, CD et al. (2009) Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish obese subjects study): A prospective, controlled intervention trial. Lancet Oncol 10, 653662.
14. Vague, J (1956) The degree of masculine differentiation of obesities: A factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Obes Res 4, 204212.
15. Vague, J (1947) La differenciation sexuelle, facteur determinant des formes de l'obesité. Presse Medl 53, 339340.
16. Fox, CS, Massaro, JM, Hoffmann, U et al. (2007) Abdominal visceral and subcutaneous adipose tissue compartments. Circulation 116, 3948.
17. Galic, S, Oakhill, JS & Steinberg, GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316, 129139.
18. Alberti, KGMM, Zimmet, P & Shaw, J (2006) Metabolic syndrome – a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 23, 469480.
19. Fujioka, S, Matsuzawa, Y, Tokunaga, K et al. (1987) Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 36, 5459.
20. Nedungadi, TP & Clegg, DJ (2009) Sexual dimorphism in body fat distribution and risk for cardiovascular diseases. J Cardiovasc Transl Res 2, 321327.
21. Schapira, DV, Clark, RA, Wolff, PA et al. (1994) Visceral obesity and breast cancer risk. Cancer 74, 632639.
22. Beddy, P, Howard, J, McMahon, C et al. (2010) Association of visceral adiposity with oesophageal and junctional adenocarcinomas. Br J Surg 97, 10281034.
23. Schoen, RE, Tangen, CM, Kuller, LH et al. (1999) Increased blood glucose and insulin, body size, and incident colorectal cancer. J Natl Cancer Inst 91, 11471154.
24. Yamaji, T, Iwasaki, M, Sasazuki, S et al. (2009) Visceral fat volume and the prevalence of colorectal adenoma. Am J Epidemiol 170, 15021511.
25. Nam, SY, Kim, BC, Han, KS et al. (2010) Abdominal visceral adipose tissue predicts risk of colorectal adenoma in both sexes. Clin Gastroenterol Hepatol 8, 443450.
26. Cowey, S & Hardy, RW (2006) The metabolic syndrome: A high-risk state for cancer? Am J Pathol 169, 15051522.
27. Giovannucci, E (2007) Metabolic syndrome, hyperinsulinemia, and colon cancer: A review. Am J Clin Nutr 86, 836S842S.
28. Colangelo, LA, Gapstur, SM, Gann, PH et al. (2002) Colorectal cancer mortality and factors related to the insulin resistance syndrome. Cancer Epidemiol Biomarkers Prev 11, 385391.
29. Bowers, K, Albanes, D, Limburg, P et al. (2006) A prospective study of anthropometric and clinical measurements associated with insulin resistance syndrome and colorectal cancer in male smokers. Am J Epidemiol 164, 652664.
30. Stocks, T, Borena, W, Strohmaier, S et al. (2010) Cohort profile: The metabolic syndrome and cancer project (Me-Can). Int J Epidemiol 39, 660667.
31. Stocks, T, Lukanova, A, Bjørge, T et al. (2010) Metabolic factors and the risk of colorectal cancer in 580,000 men and women in the metabolic syndrome and cancer project (Me-Can). Cancer 117, 23982407.
32. Bjørge, T, Stocks, T, Lukanova, A et al. (2010) Metabolic syndrome and endometrial carcinoma. Am J Epidemiol 171, 892902.
33. Häggström, C, Stocks, T, Rapp, K et al. (2011) Metabolic syndrome and risk of bladder cancer: Prospective cohort study in the metabolic syndrome and cancer project (Me-Can). Int J Cancer 128, 18901898.
34. Johansen, D, Stocks, T, Jonsson, HK et al. (2010) Metabolic factors and the risk of pancreatic cancer: A prospective analysis of almost 580,000 men and women in the metabolic syndrome and cancer project. Cancer Epidemiol Biomarkers Prev 19, 23072317.
35. Russo, A, Autelitano, M & Bisanti, L (2008) Metabolic syndrome and cancer risk. Eur J Cancer 44, 293297.
36. Kang, HW, Kim, D, Kim, HJ et al. (2009) Visceral obesity and insulin resistance as risk factors for colorectal adenoma: A cross-sectional, case-control study. Am J Gastroenterol 105, 178187.
37. Siegel, EM, Ulrich, CM, Poole, EM et al. (2010) The effects of obesity and obesity-related conditions on colorectal cancer prognosis. Cancer Control 17, 5257.
38. Healy, L, Howard, J, Ryan, A et al. (2011) Metabolic syndrome and leptin are associated with adverse pathological features in male colorectal cancer patients. Colorectal Dis 22, 281288.
39. Healy, LA, Ryan, AM, Carroll, P et al. (2010) Metabolic syndrome, central obesity and insulin resistance are associated with adverse pathological features in postmenopausal breast cancer. Clin Oncol (R Coll Radiol) 22, 281288.
40. Shen, Z, Wang, S, Ye, Y et al. (2010) Clinical study on the correlation between metabolic syndrome and colorectal carcinoma. ANZ J Surg 80, 331336.
41. Moon, H-G, Ju, Y-T, Jeong, C-Y et al. (2008) Visceral obesity may affect oncologic outcome in patients with colorectal cancer. Ann Surg Oncol 15, 19181922.
42. Jankowski, JA, Wright, NA, Meltzer, SJ et al. (1999) Molecular evolution of the metaplasia–dysplasia–adenocarcinoma sequence in the esophagus. Am J Pathol 154, 965973.
43. National Cancer Registry of Ireland (2009) http://www.ncri.ie/data (accessed August 2011).
44. Bollschweiler, E, Wolfgarten, E, Gutschow, C et al. (2001) Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer 92, 549555.
45. Calle, EE & Kaaks, R (2004) Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4, 579591.
46. Friedenberg, FK, Xanthopoulos, M, Foster, GD et al. (2008) The association between gastroesophageal reflux disease and obesity. Am J Gastroenterol 103, 21112122.
47. Lagergren, J, Bergstrom, R & Nyren, O (1999) Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med 130, 883890.
48. Ryan, AM, Rowley, SP, Fitzgerald, AP et al. (2006) Adenocarcinoma of the oesophagus and gastric cardia: Male preponderance in association with obesity. Eur J Cancer 42, 11511158.
49. Ryan, AM, Healy, LA, Power, DG et al. (2008) Barrett esophagus: Prevalence of central adiposity, metabolic syndrome, and a proinflammatory state. Ann Surg 247, 909915.
50. Howard, JM, Beddy, P, Ennis, D et al. (2010) Associations between leptin and adiponectin receptor upregulation, visceral obesity and tumour stage in oesophageal and junctional adenocarcinoma. Br J Surg 97, 10201027.
51. Elliott, BE, Tam, SP, Dexter, D et al. (1992) Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: Effect of estrogen and progesterone. Int J Cancer 51, 416424.
52. Celis, JE, Moreira, JM, Cabezon, T et al. (2005) Identification of extracellular and intracellular signalling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: Toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics 4, 492522.
53. Cook, KS, Min, HY, Johnson, D et al. (1987) Adipsin: A circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science 237, 402405.
54. Flier, JS, Cook, KS, Usher, P et al. (1987) Severely impaired adipsin expression in genetic and acquired obesity. Science 237, 405408.
55. Zhang, Y, Proenca, R, Maffei, M et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425432.
56. Scherer, PE, Williams, S, Fogliano, M et al. (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270, 2674626749.
57. Ouchi, N, Parker, JL, Lugus, JJ et al. (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11, 8597.
58. Harvey, AE, Lashinger, LM & Hursting, SD (2011) The growing challenge of obesity and cancer: An inflammatory issue. Ann NY Acad Sci 1229, 4552.
59. Kadowaki, T & Yamauchi, T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26, 439451.
60. Rose, DP, Komninou, D & Stephenson, GD (2004) Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev 5, 153165.
61. Cummings, DE & Foster, KE (2003) Ghrelin–leptin tango in body-weight regulation. Gastroenterology 124, 15321535.
62. Pär, S, Annekatrin, L, Carine, B et al. (2004) Obesity and colon cancer: Does leptin provide a link? Int J Cancer 109, 149152.
63. Somasundar, P, McFadden, DW, Hileman, SM et al. (2004) Leptin is a growth factor in cancer. J Surg Res 116, 337349.
64. Howard, JM, Pidgeon, GP & Reynolds, JV (2010) Leptin and gastro-intestinal malignancies. Obes Rev 11, 863874.
65. Garofalo, C & Surmacz, E (2006) Leptin and cancer. J Cell Physiol 207, 1222.
66. Bergman, RN & Ader, M (2000) Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends Endocrinol Metab 11, 351356.
67. Ebeling, P & Koivisto, V (1994) Non-esterified fatty acids regulate lipid and glucose oxidation and glycogen synthesis in healthy man. Diabetologia 37, 202209.
68. Moller, DE & Flier, JS (1991) Insulin resistance – mechanisms, syndromes, and implications. N Engl J Med 325, 938948.
69. Wajchenberg, BL (2000) Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr Rev 21, 697738.
70. Fasshauer, M & Paschke, R (2003) Regulation of adipocytokines and insulin resistance. Diabetologia 46, 15941603.
71. Greenberg, AS & McDaniel, ML (2002) Identifying the links between obesity, insulin resistance and beta-cell function: Potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes. Eur J Clin Invest 32, Suppl. 3, 2434.
72. Stocks, T, Rapp, K, Bjørge, T et al. (2009) Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (Me-Can): Analysis of six prospective cohorts. PLoS Med 6, e1000201.
73. Hsing, AW, Gao, Y-T, Chua, S et al. (2003) Insulin resistance and prostate cancer risk. J Natl Cancer Inst 95, 6771.
74. Yang, Y-X, Hennessy, S & Lewis, JD (2004) Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology 127, 10441050.
75. Osborne, CK, Bolan, G, Monaco, ME et al. (1976) Hormone responsive human breast cancer in long-term tissue culture: Effect of insulin. Proc Natl Acad Sci USA 73, 45364540.
76. Pollak, M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8, 915928.
77. Frasca, F, Pandini, G, Sciacca, L et al. (2008) The role of insulin receptors and IGF-1 receptors in cancer and other diseases. Arch Physiol Biochem 114, 2337.
78. Samani, AA, Yakar, S, LeRoith, D et al. (2007) The role of the IGF system in cancer growth and metastasis: Overview and recent insights. Endocr Rev 28, 2047.
79. Jones, JI & Clemmons, DR (1995) Insulin-like growth factors and their binding proteins: Biological actions. Endocr Rev 16, 334.
80. Coussens, LM & Werb, Z (2002) Inflammation and cancer. Nature 420, 860867.
81. Chan, JM, Stampfer, MJ, Giovannucci, E et al. (1998) Plasma insulin-like growth factor-1 and prostate cancer risk: A prospective study. Science 279, 563566.
82. Ma, J, Pollak, MN, Giovannucci, E et al. (1999) Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-1 and IGF-binding protein-3. J. Natl. Cancer Inst. 91, 620625.
83. Renehan, AG, Frystyk, J & Flyvbjerg, A (2006) Obesity and cancer risk: The role of the insulin-IGF axis. Trends Endocrinol Metab 17, 328336.
84. Frystyk, J, Vestbo, E, Skjaerbaek, C et al. (1995) Free insulin-like growth factors in human obesity. Metabolism 44, 3744.
85. Nam, SY, Lee, EJ, Kim, KR et al. (1997) Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. Int J Obes (Lond) 21, 355.
86. Wu, Y, Brodt, P, Sun, H et al. (2010) Insulin-like growth factor-1 regulates the liver microenvironment in obese mice and promotes liver metastasis. Cancer Res 70, 5767.
87. Lashinger, LM, Malone, LM, McArthur, MJ et al. (2011) Genetic reduction of insulin-like growth factor-1 mimics the anticancer effects of calorie restriction on cyclooxygenase-2-driven pancreatic neoplasia. Cancer Prev Res (Phila) 4, 10301040.
88. Olivo-Marston, SE, Hursting, SD, Lavigne, J et al. (2009) Genetic reduction of circulating insulin-like growth factor-1 inhibits azoxymethane-induced colon tumorigenesis in mice. Mol Carcinog 48, 10711076.
89. Shaw, RJ & Cantley, LC (2006) Ras, PI(3)K and MTOR signalling controls tumour cell growth. Nature 441, 424430.
90. Weinstein, IB (2002) Addiction to oncogenes – the achilles heal of cancer. Science 297, 6364.
91. Weinstein, IB & Joe, AK (2006) Mechanisms of disease: Oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Prac Oncol 3, 448457.
92. Perou, CM, Sorlie, T, Eisen, MB et al. (2000) Molecular portraits of human breast tumours. Nature 406, 747752.
93. Sørlie, T, Tibshirani, R, Parker, J et al. (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100, 84188423.
94. Sawyers, C (2004) Targeted cancer therapy. Nature 432, 294297.
95. Paik, S, Shak, S, Tang, G et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New Engl J Med 351, 28172826.
96. Lynch, TJ, Bell, DW, Sordella, R et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350, 21292139.
97. Taron, M, Ichinose, Y, Rosell, R et al. (2005) Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas. Clin Cancer Res 11, 58785885.
98. Huang, P, Han, J & Hui, L (2010) MAPK signalling in inflammation-associated cancer development. Protein Cell 1, 218226.
99. Yu, H, Pardoll, D & Jove, R (2009) STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer 9, 798809.
100. Aggarwal, BB, Kunnumakkara, AB, Harikumar, KB et al. (2009) Signal transducer and activator of transcription-3, inflammation, and cancer. Ann NY Acad Sci 1171, 5976.
101. Sebolt-Leopold, JS & Herrera, R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4, 937947.
102. Liu, P, Cheng, H, Roberts, TM et al. (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8, 627644.
103. Jing, N & Tweardy, DJ (2005) Targeting STAT3 in cancer therapy. Anticancer Drugs 16, 601607.
104. Creighton, CJ, Sada, YH, Zhang, Y et al. (2011) A gene transcription signature of obesity in breast cancer. Breast Cancer Res Treat (Epublication ahead of print version).
105. Moore, T, Beltran, L, Carbajal, S et al. (2008) Dietary energy balance modulates signalling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prev Res (Phila) 1, 6576.
106. Algire, C, Amrein, L, Zakikhani, M et al. (2010) Metformin blocks the stimulative effect of a high-energy diet on colon carcinoma growth in vivo and is associated with reduced expression of fatty acid synthase. Endocr Relat Cancer 17, 351360.
107. Sharma, SD & Katiyar, SK (2010) Leptin deficiency-induced obesity exacerbates ultraviolet b radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet b-irradiated mouse skin. Toxicol Appl Pharmacol 244, 328335.
108. Katiyar, SK & Meeran, SM (2007) Obesity increases the risk of UV radiation-induced oxidative stress and activation of MAPK and NF-kappaB signalling. Free Radic Biol Med 42, 299310.
109. van Kruijsdijk, RCM, van der Wall, E & Visseren, FLJ (2009) Obesity and cancer: The role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev 18, 25692578.
110. Park, EJ, Lee, JH, Yu, G-Y et al. (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197208.
111. Kalaany, NY & Sabatini, DM (2009) Tumours with PI3K activation are resistant to dietary restriction. Nature 458, 725731.
112. Colotta, F, Allavena, P, Sica, A et al. (2009) Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 30, 10731081.
113. Sen, R & Baltimore, D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705716.
114. Chaturvedi, MM, Sung, B, Yadav, VR et al. (2011) NF-κB addiction and its role in cancer: ‘one size does not fit all’. Oncogene 30, 16151630.
115. Ben-Neriah, Y & Karin, M (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12, 715723.
116. Cai, D, Yuan, M, Frantz, DF et al. (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 11, 183190.
117. Walker, FC (1963) The protective function of the greater omentum. Ann R Coll Surg Engl 33, 282306.
118. Caspar-Bauguil, S, Cousin, B, Galinier, A et al. (2005) Adipose tissues as an ancestral immune organ: Site-specific change in obesity. FEBS Lett. 579, 34873492.
119. Casten, DF & Alday, ES (1971) Omental transfer for revascularization of the extremities. Surg Gynecol Obstet 132, 301304.
120. Platell, C, Cooper, D, Papadimitriou, JM et al. (2000) The omentum. World J Gastroenterol 6, 169176.
121. Lynch, L, O'Shea, D, Winter, DC et al. (2009) Invariant NKT cells and CD1d+ cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol 39, 18931901.
122. Rangel-Moreno, J, Moyron-Quiroz, JE, Carragher, DM et al. (2009) Omental milky spots develop in the absence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity 30, 731743.
123. Morris, DL, Singer, K & Lumeng, CN (2011) Adipose tissue macrophages: Phenotypic plasticity and diversity in lean and obese states. Curr Opin Clin Nutr Metab Care 14, 341346.
124. Lumeng, CN, Bodzin, JL & Saltiel, AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117, 175184.
125. Nishimura, S, Manabe, I, Nagasaki, M et al. (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15, 914920.
126. Lysaght, J, Allott, EH, Donohoe, CL et al. (2011) T lymphocyte activation in visceral adipose tissue of patients with oesophageal adenocarcinoma. Br J Surg 98, 964974.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed