Skip to main content Accessibility help

Why liquid energy results in overconsumption

  • Cees de Graaf (a1)


Liquids have been shown to have a low satiating efficiency. The may be related to the high rate of consumption for liquids which may be higher than 200 g/min. In a number of studies, we showed that the positive relationship between eating rate and energy intake is mediated by oro-sensory exposure time. Longer sensory exposure times are consistently associated with lower food intakes. This observation maybe linked to the role of cephalic phase responses to foods. Cephalic phase responses are a set of physiological responses, which are conceived to prepare the digestive system for the incoming flow of nutrients after ingestion, with the aim of maintaining homeostasis. Results from various studies suggest that cephalic phase responses are much smaller (absent) for liquids compared to solids. It is hypothesised that the absence of cephalic phase responses to liquid foods may be one of the causes why liquid energies enter the body undetected and lead to weak energy intake compensation. This idea fits with the concept of the taste system as a nutrient-sensing system that informs the brain and the gastro-intestinal system about what is coming into our body. With liquids, this system is bypassed. Slower eating may help the human body to associate the sensory signals from food with their metabolic consequences. Foods that are eaten quickly may impair this association, and may therefore lead to overconsumption of energy, and ultimately to weight gain.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Why liquid energy results in overconsumption
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Why liquid energy results in overconsumption
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Why liquid energy results in overconsumption
      Available formats


Corresponding author

Corresponding author: Professor Cees de Graaf, fax: +31 317 483342, email


Hide All
1.Swinburn, BA, Sacks, G, Lo, SK et al. (2009) Estimating the energy flux that characterize the rise of obesity. Am J Clin Nutr 89, 17231728.
2.Westerterp, KR & Speakman, JR (2008) Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int J Obes 32, 12561263.
3.Carnell, S & Wardle, J (2008) Appetitive traits and childhood obesity: measurement, origins and implications for intervention. Proc Nutr Soc 67, 343355.
4.Woods, SC (1991) The eating paradox: how we tolerate food. Psychol Rev 98, 488505. Graaf, C, Kramer, FM, Meiselman, HL et al. . (2005) Food acceptability in field studies with US Army men and women: relationship with food intake and food choice after repeated exposures. Appetite 44, 2331.
6.Rolls, BJ, Rowe, EA, Rolls, ET et al. (1981) Variety in a meal enhances food intake in man. Physiol Behav 26, 215221.
7.Higgs, S, Williamson, AC, Rotshtein, P et al. (2008) Sensory-specific satiety is intact in amnesics who eat multiple meals. Psychol Sci 19, 623628.
8.Remick, AK, Polivy, J & Pliner, P (2009) Internal and external moderators of the effect of variety on food intake. Psychol Bull 135, 434451.
9.Nolan, LJ & Hetherington, MM (2009) The effects of sham feeding-induced sensory specific satiation and food variety on subsequent food intake in humans. Appetite 52, 720725.
10.Brondel, L, Lauraine, G, van Wymelbeke, V et al. (2010) Alternation between Foods within a meal. Influence on satiation and consumption in humans. Appetite 53, 203209.
11.Havermans, RC, Hermanns, J & Jansen, A (2010) Eating without a nose: olfactory dysfunction and sensory-specific satiety. Chem Senses 35, 735741.
12.Griffioen-Roose, S, Finalyson, G, Mars, M et al. . (2010) Measuring food reward and the transfer effect of sensory specific satiety. Appetite 55, 648655.
13.Strubbe, JH & Woods, SC (2004) The timing of meals. Psychol Rev 111, 128141.
14.Woods, SC (2009) The control of food intake: behavioral v. molecular approaches. Cell Metab 9, 489498.
15.Drazen, DL, Vahl, TP, D'Alessio, DA et al. (2006) Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinol 147, 2330.
16.Birch, LL, McPhee, LL, Steinberg, LL et al. (1990) Conditioned flavor preferences in young children. Physiol Behav 47, 501505.
17.Johnson, SL, McPhee, L & Birch, LL (1991) Conditioned preferences: young children prefer flavors associated with high dietary fat. Physiol Behav 50, 12451251.
18.Kern, DL, McPhee, L, Fisher, J et al. (1993) The postingestive consequences of fat condition preferences for flavors associated with high dietary fat. Physiol Behav 54, 7176.
19.Appleton, KM, Gentry, RC & Sheperd, R (2006) Evidence of a role for conditioning in the development of liking for flavours in human in everyday life. Physiol Behav 87, 478486.
20.Zeinstra, GG, Koelen, MA, Kok, FJ et al. (2009) Children's hard wired aversion to the pure vegetables tastes. A ‘failed’ flavour-nutrient learning study. Appetite 52, 528530.
21.Menzel, P & D'Aluisio, F (2006) Hungry Planet: What the World Eats. Napa, CA: Material World books.
22.Cordain, L, Eaton, SB, Sebastian, A et al. (2005) Origins and evolution of the Western diet: health implication for the 21st century. Am J Clin Nutr 81, 341354.
23.Kuczmarski, RJ, Ogden, CL, Grummer-Strawn, LM et al. (2000) CDC Growth Charts: United States. CDC, U.S. Department of Health and Human Services, Advance Data, No. 314.
24.Viskaal-Van Dongen, M, Kok, FJ & de Graaf, C (2011) Eating rate of commonly consumed foods promotes food and energy intake. Appetite 56, 2531.
25.Haber, GB (1977) Depletion and disruption of dietary fibre. Effects on satiety, plasma-glucose, and serum insulin. Lancet 2, 679682.
26.Blundell, J, de Graaf, C, Hulshof, T et al. (2010) Appetite control: methodological aspects of the evaluation of foods. Obes Rev 11, 251270.
27.Bolton, RP, Heaton, KW & Burroughs, LF (1981) The role of dietary fibre in satiety, glucose and insulin: studies with fruit and fruit juices. Am J Clin Nutr 34, 211217.
28.Hulshof, T, de Graaf, C & Weststrate, JA (1993) The effects of preloads varying in physical state and fat content on satiety and energy intake. Appetite 21, 273286.
29.Mourao, DM, Bressan, J, Campbell, WW et al. (2007) Effects of food form on appetite and energy intake in lean and obese young adults. Int J Obes 31, 16881695.
30.Martens, MJI, Lemmens, SGT, Born, JM et al. . (2011) A solid high-protein meal evokes stronger hunger suppression than a liquefied high-protein meal. Obesity (In the Press).
31.Flood, JE & Rolls, BJ (2007) Soup preloads in a variety of forms reduce meal energy intake. Appetite 49, 626634.
32.Raben, A, Vasilaras, TH, Moller, AC et al. (2002) Sucrose compared with artificial sweeteners: different effects on ad libitum food intake and body weight after 10 weeks of supplementation in overweight subjects. Am J Clin Nutr 76, 721729.
33.DiMeglio, DP & Mattes, RD (2000) Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes Relat Metan Disord 24, 794800.
34.Rolls, BJ, Roe, LS, Beach, AM et al. (2005) Provision of foods differing in energy density affects long-term weight loss. Obes Res 13, 10521060.
35.Chen, L, Appel, LJ, Loria, C et al. (2009) Reduction in consumption of sugar-sweetened beverages is associated with weight loss: the PREMIER trial. Am J Clin Nutr 89, 12991306.
36.Schulze, MB, Manson, JE, Ludwig, DS et al. (2004) Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. J Am Med Assoc 292, 927934.
37.Malik, VS, Popkin, BM, Bray, GA et al. . (2010) Sugar sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33, 24772483.
38.Hu, FB & Malik, VS (2010) Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiological evidence. Physiol Behav 100, 4754.
39.Mattes, R (2005) Soup and satiety. Physiol Behav 17, 739747.
40.Mattes, RD & Campbell, WW (2009) Effects of food form and timing of ingestion on appetite and energy intake in lean young adults and in young adults with obesity. J Am Diet Assoc 109, 430437.
41.Ruijschop, RM, Burgering, MJ, Jacobs, MA et al. (2009) Retro-nasal aroma release depends on both subject and product differences: a link to food intake regulation? Chem Senses 34, 395403.
42.Zijlstra, N, Mars, M, de Wijk, RA et al. (2008) The effect of viscosity on ad libitum food intake. Int J Obes 32, 676683.
43.Zijlstra, N, de Wijk, RA, Mars, M et al. (2009) Effect of bite size and oral processing time of a semisolid food on satiation. Am J Clin Nutr 90, 269275.
44.Weijzen, PL, Smeets, PA & de Graaf, C (2009) Sip-size of orangeade: effects on intake and on sensory-specific satiation. Br J Nutr 102, 10911097.
45.Zijlstra, N, Mars, M, Stafleu, A et al. . (2010) The effects of texture differences on satiation in 3 pairs of solid foods. Appetite 55, 490497.
46.Hogenkamp, PS, Mars, M, Stafleu, A et al. (2010) Intake during repeated exposure to low- and high-energy-dense yoghurts by different means of consumption. Am J Clin Nutr 91, 841847.
47.Alper, CM & Mattes, RD (2002) Effects of chronic peanut consumption on energy balance and hedonics. Int J Obes Relat Metab Disord 26, 11291137.
48.Mattes, RD, Kris-Etherton, PM & Foster, GD (2008) Impact of peanuts and tree nuts on body weight and healthy weight loss in adults. J Nutr 138, 1741S1745S.
49.Mars, M, Hogenkamp, PS, Gosses, AM et al. (2009) Effect of viscosity on learned satiation. Physiol Behav 98, 6066.
50.Zafra, MA, Moilia, F & Puerto, A (2006) The neural/cephalic phase reflexes in the physiology of nutrition. Neurosci Biobehav Rev 30, 10321044.
51.Smeets, PAM, Erkner, A, de Graaf, C (2010) Cephalic phase responses and appetite. Nutr Rev 68, 643655.
52. 2010 ‘Ivan Pavlov – Biography’. available at (accessed 22 August 2010).
53.Robertson, MD (2006) Food perception and postprandial lipid metabolism. Physiol Behav 89, 49.
54.Teff, Kl & Engelman, K (1996) Oral sensory stimulation improves glucose tolerance: effects on post-prandial glucose, insulin, C-peptide and glucagon. Am J Phsiol 270, R1371R3179.
55.Teff, KL (2010) Cehalic phase pancreatic polypeptide response to liquid and solid stimuli in humans. Physiol Behav 99, 317323.
56.Teff, KL, Devine, J & Engelman, K (1995) Sweet taste: effect on cephalic insulin release in men. Physiol Behav 57, 10891095.
57.Crystal, SR & Teff, KL (2006) Tasting fat: Cephalic phase hormonal responses and food intake in restrained and unrestrained eaters. Physiol Behav 89, 213220.
58.Heath, RB, Jones, R, Frayn, KN et al. (2004) Vagal stimulation exaggerates the inhibitory ghrelin response to oral fat in humans. J Endocrinol 180, 273281.
59.Brunstrom, JM, Shakeshaft, NG & Scott-Samuel, NE (2008) Measuring ‘expected satiety’ in a range of common foods using a methods of constant stimuli. Appetite 51, 604614.
60.Wilkinson, LL & Brunstrom, JM (2009) Conditioning ‘fullness expectations’ in a novel dessert. Appetite 52, 780783.
61.Smeets, PA, de Graaf, C, Stafleu, A et al. (2005) Functional MRI of human hypothalamic responses following glucose ingestion. Neuroimage 24, 363368.
62.Smeets, PA, de Graaf, C, Stafleu, A et al. (2005) Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr 82, 10111016.
63.Smeets, AJ, Lejeune, MP & Westerterp-Plantenga, MS (2009) Effects of oral fat perception by modified sham feeding on energy expenditure, hormones and appetite profiles in the postprandial state. Brit J Nutr 101, 13601368.
64.Smeets, AJPG & Westerterp-Plantenga, MS (2006) Satiety and substrate mobilization after oral fat stimulation. Br J Nutr 95, 795801.
65.Kokkinos, A, Le Roux, CW, Alexiadou, K et al. (2010) Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. J Clin Endocrinol Metab 95, 333337.
66.Cecil, JE, Francis, J & Read, NW (1998) Relative contributions of intestinal, gastric, oro-sensory influences and information to changes in appetite induced by the same liquid meal. Appetite 31, 377390.
67.Cecil, JE, Francis, J & Read, NW (1999) Comparison of the effects of a high-fat and high-carbohydrate soup delivered orally and intragastrically on gastric emptying, appetite, and eating behavior. Physiol Behav 67, 299306.
68.Lavin, JH, French, SJ & Read, NW (2002) Comparison of oral and gastric administration of sucrose and maltose on gastric emptying rate and appetite. Int J Obes 26, 8086.
69.Almiron-Roig, E, Chen, Y & Drewnowski, A (2003) Liquid calories and the failure of satiety: how good is the evidence? Obes Rev 4, 201212.
70.Drewnowski, A & Bellisle, F (2007) Liquid calories, sugar and body weight. Am J Clin Nutr 85, 651661.
71.Dietary Guidelines Advisory Committee (2010) Report of the dietary guidelines advisory committee on the dietary guidelines for Americans, 2010: Appendix E-1: Major conclusions. USDA Center for Nutrition Policy and Promotion.
72.Shinozaki, K, Shimizu, Y, Shiina, T et al. (2008) Relationship between taste-induced physiological reflexes and temperature of sweet taste. Physiol Behav 93, 10001004.
73.Talavera, K, Yasumatsu, K, Voets, T et al. (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 10221025.
74.Green, BG & Frankmann, SP (1987) The effects of cooling the tongue in the perceived intensity of taste. Chem Senses 12, 609619. Graaf, C & Kok, FJ (2010) Nat Rev Endocrinol 6, 290293.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed